

Interference in vector meson production in Au+Au Collisions $\sqrt{s_{NN}} = 200$ GeV

- Review of analysis details
- Current status of results
- Latest alterations to the analysis
 - systematic checks
 - theory studies

Brooke Haag
UC Davis

- Photonuclear Interaction
- Two nuclei “miss” each other ($b > 2R_A$), electromagnetic interaction dominates over strong interaction
- Photon flux $\sim Z^2$
 - Weizsäcker-Williams Equivalent Photon Approximation

$$\frac{d^3N(k,r)}{dkd^2r} = \frac{Z^2\alpha x^2}{\pi^2 kr^2} K_1^2(x)$$

$K_1(x)$ = Modified Bessel function

k = photon energy

- No hadronic interactions

ρ^0 Production

- Photon emitted by a nucleus fluctuates to virtual $q\bar{q}$ pair
- Virtual $q\bar{q}$ pair elastically scatters from other nucleus
- Real vector meson (i.e. J/ψ , ρ^0) emerges

ρ^0 Production with coulomb excitation

- Photons exchanged between ions give rise to excitation and subsequent neutron emission
- Process is independent of ρ^0 production

Ultra Peripheral Collisions

Courtesy of F. Meissner

Courtesy of S. Klein

Interference

Nucleus 1 emits photon which scatters from Nucleus 2

-Or-

Nucleus 2 emits photon which scatters from Nucleus 1

Courtesy of S. Klein

- Amplitude for observing vector meson at a distant point is the subtraction (since ρ parity is negative) of two plane waves:

$$A_o(x_o, \vec{p}, b) = A(p_\perp, y, b) e^{i[\phi(y) + \vec{p} \cdot (\vec{x} - \vec{x}_o)]} - A(p_\perp, -y, b) e^{i[\phi(-y) + \vec{p} \cdot (\vec{x} - \vec{x}_o)]}$$

- Cross section comes from square of amplitude:

$$\sigma = A^2(p_\perp, y, b) + A^2(p_\perp, -y, b) - 2A(p_\perp, y, b)A(p_\perp, -y, b) \times \cos[\phi(y) - \phi(-y) + \vec{p} \cdot \vec{b}]$$

- We can simplify the expression if $y \rightarrow 0$:

$$\sigma = 2A^2(p_\perp, b)(1 - \cos[\vec{p} \cdot \vec{b}])$$

Studying the Interference

- Generate MC t spectra with and without interference
- Calculate MC ratio in order to illustrate interference effect
- Fit MC ratio

$$R(t) = a + \frac{b}{(t + 0.012)} + \frac{c}{(t + 0.012)^2} + \frac{d}{(t + 0.012)^3} + \frac{e}{(t + 0.012)^4}$$

Measuring the Interference

- Apply overall fit

$$\frac{dN}{dt} = Ae^{-kt} (1 + c[R(t) - 1])$$

- A = overall normalization
- k = exponential slope
- c = degree of interference

$c = 1$

expected degree of interference

$c = 0$

no interference

Illustration of Fitting Methodology

Results

Results Summary

	$C_{\text{preliminary}}$	χ^2/dof preliminary	C	χ^2/dof
excitation				
$0 < y < 0.5$	1.01 ± 0.09	50/47	1.01 ± 0.08	51/47
$0.5 < y < 1.0$	0.78 ± 0.13	72/47	0.93 ± 0.11	80/47
No excitation				
$0.1 < y < 0.5$	0.71 ± 0.16	81/47	0.85 ± 0.12	88/47
$0.5 < y < 1.0$	1.22 ± 0.21	50/47	1.06 ± 0.21	84/47

Latest Developments

- Extended rapidity range for minbias analysis
- Systematic Error Studies
 - Fitting scheme
 - Better Fit for $R(t)$
 - Theory comparisons
 - STARlight
 - KNLite - Adaptation of STARlight by Jim Draper

Extended rapidity range

- Two rapidity ranges defined for the analysis
 - $0.1 < y < 0.5$
 - $0.5 < y < 1.0$
- Cut on midrapidity to eliminate cosmics
 - Effective for topology data, but unnecessary for minbias data

$$R(t) = a + \frac{b}{(t + 0.012)} + \frac{c}{(t + 0.012)^2} + \frac{d}{(t + 0.012)^3} + \frac{e}{(t + 0.012)^4}$$

$$R(t) = a + \frac{b}{(t + 0.012)} + \frac{c}{(t + 0.012)^2} + \frac{d}{(t + 0.012)^3} + \frac{e}{(t + 0.012)^4} + \frac{f}{(t + 0.012)^5}$$

Fitting $R(t)$

$$R(t) = at^5 + bt^4 + ct^3 + dt^2 + et + f$$

$$R(t) = at^6 + bt^5 + ct^4 + dt^3 + et^2 + ft + g$$

$$\frac{dN}{dt} = Ae^{-kt}(1 + c[R(t) - 1])$$

The overall fit is:

We develop an estimate of the systematic error due to the fit by trying different fit functions.

Theory Comparisons

- 2 main theories describing interference:
 - STARlight - S. Klein and J. Nystrand
 - Hencken, Baur, Trautmann (HBT)
PRL96(2006)012303
- New model KNLite, adaptation of STARlight - Jim Draper
 - Better understanding of $R(t)$ [interference] out to 300 MeV
 - Better match to HBT
 - Studies of sensitivity to Nuclear Radius
 - Studies of sensitivity to m_p

Theory Comparisons - STARlight

- STARlight vs. HBT predictions
 - Top = no nuclear excitation
 - Bottom = multiple nuclear excitation

Theory Comparisons - KNLite

R6.7 Intrfrnc 0tag HBT• red• KNLite• blue•

R6.7 Intrfrnc 2tag HBT• red• KNLite• blue•

- KNLite vs HBT predictions
 - HBT = red, KNLite = blue
 - Top = no nuclear excitation
 - Bottom = multiple nuclear excitation

Theory Comparisons - KNLite

- Ratio of Interference to No Interference p_T spectra
 - Two rapidity bins: $y = 0$, $y = 0.5$
 - Red = no nuclear excitation
 - Green = single excitation
 - Blue = double excitation
- Clear evidence of interference out to 300 MeV

Theory Comparisons - KNLite

- Ratio of Interference to No Interference p_T spectra - mass dependence
 - no nuclear excitation
 - Top - $y = 0$
 - Middle - $y = 0.5$
 - Bottom - $y = 1.0$
 - Three mass assumptions
 - Red = ρ^0 mass = 650 MeV
 - Green = ρ^0 mass = 770 MeV
 - Blue = ρ^0 mass = 830 MeV

Theory Comparisons - KNLite

- Ratio of Interference to No Interference p_T spectra - mass dependence
 - double nuclear excitation
 - Top - $y = 0$
 - Middle - $y = 0.5$
 - Bottom - $y = 1.0$
 - Three mass assumptions
 - Red = ρ^0 mass = 650 MeV
 - Green = ρ^0 mass = 770 MeV
 - Blue = ρ^0 mass = 830 MeV

Theory Comparisons - KNLite

- Ratio of Interference to No Interference p_T spectra - nuclear radius dependence
 - no nuclear excitation
 - Top - $y = 0$
 - Middle - $y = 0.5$
 - Bottom - $y = 1.0$
 - Three radius assumptions
 - Red = 6.3 fm
 - Green = 7.0 fm
 - Blue = 7.7 fm

Theory Comparisons - KNLite

- Ratio of Interference to No Interference p_T spectra - nuclear radius dependence
 - double nuclear excitation
 - Top - $y = 0$
 - Middle - $y = 0.5$
 - Bottom - $y = 1.0$
 - Three radius assumptions
 - Red = 6.3 fm
 - Green = 7.0 fm
 - Blue = 7.7 fm

Theory Comparisons - KNLite

0tag: Y0.0to0.5 Y0.1to0.5 Y0.5to1.0 RGB

2tag: Y0.0to0.5 Y0.1to0.5 Y0.5to1.0 RGB

- Ratio of Interference to No Interference p_T^2 spectra
 - Top = no nuclear excitation
 - Bottom = double excitation
 - Three rapidity ranges
 - Red = $0.0 < y < 0.5$
 - Green = $0.1 < y < 0.5$
 - Blue = $0.5 < y < 1.0$

Conclusions and Outlook

- Fitting scheme well refined
 - Still trouble with χ^2 on several of the fits
 - considering scaling data by $\sqrt{\chi^2}$ as outlined in particle data guide
- Good handle on systematics
 - Theory has provided biggest trouble
 - KNLite provides better idea of systematics and better comparisons to established theory
 - Likely KNLite will be used to define $R(t)$ in the final data fits
- Paper draft currently being worked on