Analysis of fixed target collisions with the STAR detector

Brooke Haag for the STAR Collaboration Hartnell College / University of California, Davis Presented at the Meeting of the California Section of the APS November 11, 2011

Creating mini-big bangs in the laboratory

1015

1012

onizat

quark-gluon plasma

Goal: Use relativistic collisions of nuclei to create hot dense matter which reproduces the earliest stages of the universe

QCD phase diagram

• We have created a new state of matter consistent with the QGP !

• In 2010 (and continuing through 2011) an extensive beam energy scan was undertaken at RHIC with a major goal to find the critical point.

• Fixed target collisions could extend the physics analysis to even lower \sqrt{s} .

STAR has fixed target events

- gold beam ions collide with aluminum beam pipe atoms
- the events are asymmetrical
- acceptance is not optimal ...

Kinematic Calculations

Collision Energy (GeV)	Single Beam Energy	Single Beam P _z (GeV/c)	Fixed Target √s	Single Beam Rapidity	Center of Mass Rapidity
19.6 Au+Au	9.8	9.76	4.47 Au+Al	3.04	1.52
II.5 Au+Au	5.75	5.67	3.53 Au+Al	2.51	1.25
7.7 Au+Au	3.85	3.74	2.99 Au+Al	2.10	1.05

 $\sqrt{(s_{NN})} =$ center of mass energy

- √(s_{NN}) = √(2m² + 2Em) m = 0.9315 GeV/c²; E = 9.8 GeV
 √ (s_{NN}) = 4.47 GeV
 - $\sqrt{(S_{NN})} = 4.47 \text{ GeV}$
- $p_z = \sqrt{(E^2 m^2)} = 9.76 \text{ GeV/c}$

rapidity (y)

• $y_{\text{beam}} = 0.5*[\ln(E + p_z)/(E - p_z)]$

$$y_{\text{beam}} = 3.0$$

STAR Particle identification via dE/dx negative particles positive particles 160 dE/dx 10⁻⁴ 140 120 100 80 10⁻⁵ 60 William Provident 40 20

 dE/dx from beampipe events as per selection criteria in slide 8

p (GeV/c)

10⁻⁶

0.2

0.4

p (GeV/c)

• particle bands are well separated

dE/dx

10⁻⁴

10^{-t}

10⁻⁶

STAR

π^- spectra comparisons

uncorrected STAR data points

slopes of π⁻ spectra
STAR data, AGS data, and
UrQMD compare
reasonably

 AGS yields are predictably above STAR for Au+Au (AGS) vs. Au+Al (STAR)

π^+/π^- yield ratios

• Net positive charge in the collision zone

- expanding spherical source
- → effective potential

• Extracted parameters include initial ratio R and the full coloumb potential Vc

• Coloumb potential (Vc) of the source modifies momentum distribution

 \bullet greater effect for low– momentum π

• R-primordial ratio from initial yields, unmodified by the coloumb source

Conclusions and Outlook

- We can do physics with STAR as a fixed target experiment ! igodol
 - We have been able to extract pion spectra for fixed target collisions at lab rapidity
 - working to understand detector efficiency at high rapidities via simulated events
 - checking pion contamination, stability of multiplicity \bullet as a function of zVertex
 - Yields and slopes compare favorably with published data \bullet in this energy range
 - We **can** extend the search for the critical point to lower energies
 - We have more fixed target data at $\sqrt{(s_{NN})}$ of 3.0 and 3.5 GeV

Backup Slides

Source Coulomb Potential

$$\frac{\pi^{+}}{\pi^{-}} (m_{T} - m_{\pi}) = R \frac{\exp\left[\left(E + V_{\text{eff}}\right)/T_{\pi}\right] - 1}{\exp\left[\left(E - V_{\text{eff}}\right)/T_{\pi}\right] - 1} \cdot J \quad \text{Ratio as a function of transverse kinetic energy with transformed B-E distribution}$$
$$J = \frac{E - V_{\text{eff}}}{E + V_{\text{eff}}} \frac{\sqrt{\left(E - V_{\text{eff}}\right)^{2} - m_{\pi}^{2}}}{\sqrt{\left(E + V_{\text{eff}}\right)^{2} - m_{\pi}^{2}}} \qquad \text{Jacobian of the transformation}$$
$$V_{\text{eff}} (\gamma_{\pi} \beta_{\pi}) = V_{C} \left(1 - e^{-E_{\max}(\gamma_{\pi} \beta_{\pi})/T_{p}}\right) \qquad \text{Effective Coulomb potential accounting for the reduced charge seen by low momentum } \pi$$
$$E_{\max} (\gamma_{\pi} \beta_{\pi}) = \sqrt{\left(m_{p} \gamma_{\pi} \beta_{\pi}\right)^{2} + m_{p}^{2}} - m_{p} \qquad \text{Maximum kinetic energy of the corresponding } \pi \text{ velocity}}$$

- Net positive charge in the collision zone
 - Expanding spherical source \rightarrow effective potential
- Coulomb potential (V_c) of the source modifies momentum distribution
 - Greater effect for low-momentum $\boldsymbol{\pi}$
- R primordial ratio from initial yields, unmodified by the coulomb source
- Extracted parameters include initial ratio R and the full coulomb potential V_c

π^+/π^- yield ratios fit parameters

The Basics

matter in the universe is

made of atoms

proton

d

11

nucleus = protons + neutrons

mesons = 2 quarks baryons = 3 quarks nucleons are hadrons (made of quarks)

STAR

π spectra

