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Abstract

Two separate studies of particle production at higher twist are presented. Both
studies are based upon a model developed to describe anomalous production of charm
quarks. In this model, heavy quark states can briefly exist in the hadron wavefunction,
leading to enhanced forward, or large xr, production of charm. Although this model,
known as the intrinsic charm model, was first applied to charm production, it can
be applied quite generally to any strongly-interacting heavy particle in a QCD state.
The first topic studied is the forward production of charm and charm-strange hadrons
by pion, proton, and hyperon beams. The original intrinsic charm model is refined
and expanded in this work and compared to recent data with hyperon beams on
nuclear targets. The second topic is more speculative. If the mass of the gluino, the
supersymmetric partner of the gluon, is light, of the same order as a charm or bottom
quark mass, then the proposed R-hadrons may exhibit some of the same production
characteristics as large xp charm hadrons. R-hadron production is studied in an

intrinsic gluino framework and the effects at large x are shown to be significant.
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Chapter 1

Introduction



1.1 Overview

Quantum field theory has been very successful in describing scattering problems
involving point particles. However, if scattering occurs between systems with complex
structure, such as atoms, nuclei, or hadrons, the scattering formalism becomes richer
and more intricate.

Quantum electrodynamics, QED, is the quantum theory describing the interac-
tions between electromagnetically charged objects, such as electrons, and photons. In
QED, constituents of the bound state and the bound states themselves can be studied
separately. However, one does not have such a luxury when studying the structure
of hadrons since the bound states interact via the strong force. These states are
governed by quantum chromodynamics, QCD.

The QED Lagrangian is invariant under an Abelian U(1) local gauge transfor-
mation and thus has only one type of charge — the electric charge. With this gauge
symmetry, the photons themselves are neutral. In addition, the coupling constant in
QED is known to be intrinsically small, making weak coupling approximations very
useful. Electric charge screening around a charge in vacuum conspires to very weakly
increase the strength of the interactions at short distances. Moreover, electrically
charged objects are routinely observed; they are not confined to bound states.

In contrast, QCD is a non-Abelian SU(3) gauge theory. The symmetries of the
QCD Lagrangian under local SU(3) gauge transformations are more complicated than
those in QED. The fundamental fermions for QCD are quarks. The quarks come in

three color charges called red, green, and blue, implying an SU(3) gauge structure. By



demanding local SU(3) gauge invariance, the introduction of eight colored massless
gauge boson fields, called gluons, is required. Unlike the photons of QED, these gluons
carry the charge of the interaction. This makes the effective range of the force short,
~ 1 fm, because the gluons can couple to each other. Also, aside from the gauge
structure of QCD, the strength of the force is intrinsically very strong. This makes
weak coupling approximations untenable except by exploiting asymptotic freedom,
discussed below.

Both the strength of the coupling and the SU(3) gauge structure contribute to
two of the most interesting properties of QCD: asymptotic freedom and confinement.
Asymptotic freedom is a direct consequence of the non-Abelian gauge structure. The
coupling constant, a,, weakens as the distance between colored objects becomes small

or if the momentum scale is large. A one loop QCD calculation gives [1]

127

as(Q°) = (33 — 2ny) ln(Q2/A2QCD)

(1.1)

where % is the momentum scale and n; is the the number of quark flavors. What
defines small may depend on the exact problem, but a rough lower limit is set by
the momentum scale Aqcp ~ 200 MeV, approximately the inverse size of a typical
hadron, ~ 1 fm™!.

In addition, all known particles composed of quarks and gluons appear macro-
scopically as color neutral hadrons. No free colored objects have been observed in
the laboratory. This nonintuitive property of QCD is known as confinement: quarks
and gluons are forever doomed to reside in color singlet bound states. Although not

proven conclusively, there is considerable theoretical evidence that the confinement of



colored objects is a fundamental property of QCD. No free colored objects are then
expected to be observed. For example, free quarks, which have fractional electromag-
netic charge, have not been seen. Asymptotic freedom and confinement in QCD are

opposite to the corresponding behavior found in QED.

1.2 Parton Model

Because of confinement, typical scattering in QCD will always involve complicated
bound states. Therefore, to perform scattering calculations in QCD one must ulti-
mately find a way to treat such states in a straightforward manner. For this reason,
the parton model was developed. The parton model [1, 2] provides a simple picture
of QCD bound states for the purpose of modeling scattering processes.

The QCD bound state is made up of a variety of objects called partons which
are essentially quarks, antiquarks, and gluons. A distinction is made between the
primary constituents, the valence quarks, and the short-lived fluctuations, the sea.
For example, although the proton (uud) is primarily composed of up quarks and down
quarks, bound together by the exchange of gluons, there is also a sizable population
of anti-up, anti-down, strange, and anti-strange quarks residing in the proton’s sea.
The light quark contribution to the sea must be extracted experimentally, usually
from deep inelastic scattering, described below.

However, there is considerable evidence that heavy quarks, such as charm and
bottom, are also present in the hadronic sea — albeit at a very low level. This is a

very intriguing possibility. The heavy quark pair has a mass considerably larger than



the proton itself, yet it may be present in the bound state as a virtual fluctuation. In
principle, any allowed fluctuation is present. For example, exotica, such as supersym-
metric particles like the gluino, can be considered. Unlike light quarks, contributions
from heavy particles to the hadronic sea may be calculated. These heavy fluctuations
have considerable phenomenological impact, to be discussed below.

When the system is viewed in the infinite momentum frame [1, 3], IMF, each par-
ton is assumed massless and carries some fraction of the original hadron momentum.
In the IMF frame, the hadron is boosted to a highly relativistic frame. The direction
and size of the boost are usually chosen so that the momentum transfer from the
virtual particle becomes transverse to the axis of motion. Because of this choice and
because of length contraction along the boost direction, the problem reduces to a two
dimensional one in the transverse direction. In our frame of observation, the bound
state has been compressed so that the only important scales are transverse to the
direction of motion.

More importantly, in our frame, because of time dilation, the timescales over
which the interaction takes place between the sufficiently virtual probe (Q* > k%)
and projectile become short compared to the timescales over which the constituents
of the bound state, the partons, interact with each other. This insures that the
probe interacts incoherently with only a single parton. Also in our frame, there
are a well defined number of partons at the moment of interaction. In contrast, if
the timescales are comparable, then interactions between partons in the bound state
will cause fluctuations in the number of partons over the timescale of the external

interaction. In this case, the external interaction might coherently probe several
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partons at once, greatly complicating the calculation.

Now, with a well defined number of partons in the bound state over the timescale
of an interaction and with the ability to incoherently probe a single parton during
the interaction, universal properties of the hadron itself can be studied. Although
properties of the hadron are frame independent, the parton model in the infinite mo-
mentum frame provides a particularly convenient physical picture. Important prop-
erties include sea and valence quark momentum distributions. These distributions
are intrinsic to the hadron and can be carried over to other calculations.

To calculate important physical quantities such as the cross section in a scattering
process, an expression for the scattering matrix is required. In quantum field theory,
using Feynman diagrams, quantum mechanical amplitudes are expressed as pertur-
bative expansions in powers of the coupling constant. These perturbative tools have
proven to be remarkably successful in the absence of analytical solutions for problems
of interest in QED. QED is ideally suited for such a perturbative expansion because
the coupling constant is quite small, ensuring accurate results with only a few terms.

Originally, it was natural to hope that perturbation theory could be universally
applied to problems of interest in QCD. However, because of confinement, the QCD
coupling constant is greater than one once the distance scale is larger than ~ 1 fm,
the size of a typical hadron. Perturbative scattering in QCD must be approached
carefully. Perturbation theory in QCD becomes a useful calculational tool only when
the coupling constant is small.

QCD is then divided into two domains: perturbative and nonperturbative QCD.

Nonperturbative QCD must be used when when the coupling constant is large for

12



a given problem. These processes often must be modeled nonrigorously, but there
are exceptions. The most successful rigorous nonperturbative method is lattice QCD
[4] which utilizes the path integral approach to quantum field theory. The tech-
nique does not typically use perturbative approximations in the coupling constant
— although there are other kinds of approximations made. Lattice calculations have
made great progress towards understanding the fundamental structure of quantum
field theory. These calculations have also made numerical improvements in calculating
quark and hadron masses as well as modeling finite temperature effects in quantum
field theory. However, lattice techniques are notoriously computer intensive and are
currently unable to to perform important phenomenological calculations of dynamic
scattering problems.

Perturbative QCD, pQCD, has been successfully applied to a number of physical
processes including electron-positron annihilation, quark leptoproduction, and large
transverse momentum jets. However, two particular applications of pQCD are of
interest here. Deep inelastic scattering, DIS, resolves the detailed structure of hadrons
when high energy leptons emit virtual particles with a large momentum transfer.
The momentum transfer from the lepton probe sets the scale for the perturbative
expansion. When pQCD is applied to highly relativistic collisions between hadrons,
producing particles with a large invariant mass, the invariant mass sets the scale.

In each case, the calculations become more reliable as the momentum scale —
momentum transfer or invariant mass — grows larger. This occurs for two reasons.
First, the coupling constant in QCD decreases as the momentum scale increases due

to asymptotic freedom: the perturbative expansion in powers of the coupling constant
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will converge more quickly. Also, a large momentum scale will promote only single
particle scattering in the bound state. For example, if the momentum transfer is
too small in DIS, the wavelength of the virtual particle is long, permitting coherent

scattering off several constituents of the bound state.

1.2.1 Deep Inelastic Scattering

Deep inelastic scattering of leptons on hadronic targets provides a clean view of
hadron structure. The large momentum transfer of the probe can produce virtual
particles of small wavelengths which can then resolve individual components of the
hadron structure. By analyzing scattering data over various kinematic variables,
detailed information about the hadron target can be inferred.

In inelastic electron-proton scattering, using the notation of Ref. [1], the cross
section is proportional to the contraction of the lepton tensor, L7, with the hadron

tensor, WH,

do ~ LS, W™ (1.2)

where the leptonic tensor is

L, = % > [(Fou) Yuw (Kin) [t (Kout )7t (in)] " (1.3)

spins
and T(koys) and u(ki,) represent the outgoing and incoming Dirac spinors with corre-
sponding momentum ko, and k;,. The general symmetric form of the hadronic tensor
is

i} S O We o, Wi, W , ,
WH = —W,g* +ﬁ§p“p +ﬁ§q“q +ﬁ2(p“q + ¢"p”) (1.4)
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where M is the mass of the proton. The term W3 has been omitted because it is
reserved for the parity violating portion of the structure function of the proton. The
W3 term is probed with neutrino beams rather than electron beams and is needed for
a complete global analysis of the hadron structure. Using Ward identities to write

Ws and W, in terms of W; and W5, the expression simplifies to

q'q", W, p-q , Da .,
r )+ W(p" - ?qu)(p - ?q )- (1.5)

W =Wy (—g" +
The structure functions W; and W5 depend on two independent variables: the four-
momentum transfer between the electron and proton, Q? = —¢?, and the energy
transfer in the target rest frame, v = (p- q)/M. Neglecting the mass of the electron,

the cross section can be written

dU lab Oé2

dE'dQ)  4FE2sin*(0/2)

[Wa(v, @*)cos?(0/2) + 2W; (v, Q*)sin®(6/2)] (1.6)

where now W; and W, can be extracted experimentally by measuring the energy of
the outgoing electron and its angle.
If the virtual photon is scattering off a point particle of unit charge in the proton,
e.g. a parton of mass m, then W; and W, will take the form
Q? Q?

2mWP™ (v, Q) = Qm—yé(l - 2m—1/) (1.7)
Q2

). (1.8)

YWE™ (1, Q) = 6(1 -

If, in the limit of large Q?, W, and W, approach their elastic point-scattering
limits and become a function of one variable, w = 2Mv/Q?, this is a signal that the

virtual photon is probing an electrically charged pointlike constituent of the proton.
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The proton structure functions F; and Fj, in the pointlike limit of large Q?, are

defined in terms of WP and Wpo™*

MWP™ (1, Q%) — Fi(w) (1.9)
WP (1, Q%) — Fy(w). (1.10)

The kinematics of the parton model define the four-momentum of the struck
parton as zP where P is the four-momentum of the proton and x is the momentum
fraction carried by that parton. This implies m = x M, so the massless limit is taken
assuming P is large. In this limit, substituting m = M into Eqgs. (1.7) and (1.8), F}

and F, become

Fiw) = 2;%5(1 _ %) (1.11)
Fy(w) = 6(1 — %). (1.12)

Egs. (1.11) and (1.12) describe the proton structure functions for an electron scat-
tering off of one parton carrying an exact momentum fraction z. If the i*" parton
has a probability f;(z) of having momentum fraction z, the above expressions can be
generalized by integrating over all momentum fractions and summing over all partons

weighted by their respective distributions,

Fw) =Y [ @ h@as - ) (1.13)
Fiw) = %FQ(w). (1.14)

This gives
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z) = el fi(z) (1.15)
Fi(z) = —F (1.16)
) =— :
1 o 2
where e; is the fractional electric charge of the i*" parton and

1 Q?
== .
w 2Mv

(1.17)

The kinematics of the probe, Q? and v, are directly related to the momentum fraction
of the parton, z. The property that F} and F, only depend on z and not Q? is called
Bjorken scaling. Although the above approach agrees with the data for w ~ 4, scaling
violations were found experimentally when w # 4. These are explained by higher
order corrections to the above treatment, where, for example, single partons radiate
gluons. Gluon radiation drives the evolution of the parton distribution functions from
one momentum scale to another. If the parton distributions are known at some low
momentum scale, (Jy, they can be determined at higher scales through the coupled

quark and gluon evolution equations, the Altarelli-Parisi (DGLAP) equations [1]

dleJi(Z’QQ) o /1 Yty QQ)qu(g) + g(y,QZ)qu(g)) (1.18)

d , N
dmed @) = / Zf, y)+g(yQ) () (1.19)

where f;(z,@?%) and g(z, Q?) are the parton distribution functions for quarks of flavor
i and gluons respectively. The functions Py (z/y), Pyy(x/y), Py(x/y), and Pyy(z/y)
are splitting functions which give the probability that a parton shifts from momentum

fraction y to x by radiating a gluon with y > z.

17



The proton, although dominated by the uud valence quark configuration at high
x, has fluctuations of ¢q pairs, the sea quarks, as well as gluons in its bound state. In
fact, as mentioned previously, all possible fluctuations not expressly forbidden should
be present to some degree. This includes heavy quarks, weak vector bosons, SUSY
particles, and other exotica. In a QCD bound state, because of the strong coupling
constant, sea fluctuations participating in the strong interaction can play a prominent
role in bound state dynamics. QED bound states also have fluctuations of this kind,
but they are less probable because of the small coupling constant. They tend to play
only a small role in the bound state dynamics, but can contribute measurably to
the energy spectrum of bound states as in the case of the celebrated Lamb shift in
hydrogen.

The essence of the parton model in DIS is that a lepton scattering off a com-
plex hadronic bound state can be reduced to point interactions in the large Q? limit.
Further analysis demonstrates that the bound state can be understood through the
structure functions which in turn are related to the parton distributions of the con-
stituents. In the case above, electromagnetic properties of the proton can be fully
characterized by the structure functions Fi(z) and Fy(x). These are ultimately related
to the parton distribution functions, f;(x), through Eq. (1.15). Once measured, these
distributions should be characteristic to the proton and usable in other calculations,
such as hadron-hadron interactions, after evolution to the appropriate momentum

scale as in Eqs. (1.18) and (1.19).

18



1.2.2 Hadron-Hadron Interactions

Treating hadron-hadron interactions presents a unique set of complications. In
this case, two bound states of partons are colliding. If a calculation is to be accurate,
this will necessarily involve both long scales, the partons in the confined QCD bound
state, and short scales, the partons participating in hard interactions sufficient to
produce a large invariant mass.

The cross section for a hadron-hadron process, A+ B — Q+Q, producing a heavy

quark pair is given by [5]

g = Z/da:ldxzfi/A(xl,,u%)fj/B(xg,u%)&ij. (120)

i,j

This form for the cross section is known as leading twist. The parton distri-
bution functions for projectile and target, fi/a and f; g, are typically evaluated at
the factorization scale up = M where M is the invariant mass of the heavy quark
pair. As discussed in the previous section, the parton distributions are related to the
structure function F, through Eq. (1.15) and represent the probability of finding a
particular parton with longitudinal momentum fraction x in the bound states of the
initial hadrons. The parton level cross section &;; is related to the matrix elements
of the particular subprocess contributing to the final state. It is evaluated at the
renormalization scale ug, typically set equal to pur. The sum convolutes the parton
densities with the short distance cross section for each participating parton pair from
the projectile, 7, and target, j.

The applicability of pQCD here depends on having a small coupling constant at the

momentum scale set by the invariant mass of the produced particle. This will insure a
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reliable perturbative expansion. However, the reliability of this method also depends
on the ability to factorize the contributions of each scale in the calculation. The
contributions from long and short scales must be independent; if they are entangled,
the utility of this method may break down. This independence insures that only single
partons are interacting from target and projectile — each is playing a well-defined role
in its respective bound state but interacting as essentially free point-particles with the
other. The ability to factorize each contribution depends on the hard scale involved.
At softer scales, the long and short distance behaviors may mix. This indicates that
multi-parton processes will begin to contribute in an essentially nonperturbative way,
rendering Eq. (1.20) unreliable. If the cross section is dominated by parton-parton
level processes and the long and short scales factorize, the leading twist cross section,

Eq. (1.20), is reliable.

1.3 Anomalous Charm Production

In principle, heavy quark hadroproduction is ideally suited for pQCD applica-
tions as described in Eq. (1.20). The large mass sets a scale where a,;(M?) is both
less than one and sufficiently small for the perturbative expansion to converge with
just a few terms. Also, a large mass reliably separates long and short distance con-
tributions between the parton distribution functions and the matrix elements. These
parton distribution functions can be extracted from experimental data, such as in
DIS, described above.

Amongst the three heavy quarks — top, bottom, and charm — the charm quark

20



finds itself in a special position. At m. ~ 1.5 GeV, it is light enough so that charm
is produced and measured fairly easily. However, charm is heavy enough so that,
using the one loop form for a, given by Eq. (1.1), o ~ 0.24. This is obtained using
ny = 4 with Q = 3.0 GeV, the charm pair mass scale. This value of «; is small
enough so that a perturbative expansion can be done with some confidence, but large
enough so that nonperturbative effects can contribute nontrivially. In contrast, for
the strange quark, the heaviest of the light quarks with m, ~ Aqcp, a5 becomes very
large at the strange pair mass scale. This renders the use of Eq. (1.20) unworkable
for strangeness production. Although a; ~ 0.18 at the bottom pair mass scale, with
Q ~ 2my ~ 9 GeV and ny = 5, and a; ~ 0.09 at the top pair mass scale, with
Q ~ 2m; ~ 350 GeV and n; = 6, these particles are considerably less abundant
than charm. All of these values of a should be compared to the small QED coupling
constant o = 1/137 ~ 0.007. With the above values of «;, pQCD, as applied to quark
hadroproduction, will never attain the same accuracy as QED.

Because the charm quark is easy to produce and its mass straddles the domain
between hard and soft scales in QCD, charm hadroproduction offers a unique window
into the transition between pQCD and nonperturbative QCD. The difference between
charm production calculations and the experimental data gives a strong measure of
nonperturbative contributions to hadroproduction. By studying the exact nature of
anomalies observed in charm production, a more complete view of soft production
processes emerges.

Many experiments have measured unexpected effects in charm production. For

example, the types of anomalies observed include large J/v and J/v pair cross sec-
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tions as rr — 1, leading particle effects, and nonlinear cross section dependence on
the atomic number of the target, A(xzr). Table 1.1 lists various experiments and the
effects they observed. The list is not exhaustive, but gives strong support for the

breakdown of leading twist pQCD.

Experiment Energy | Process Effect

NA3 [6,7,8] | 150 GeV | 7~ A — J/¢J/¢ | Anomalously high double
280 GeV | m= A — J/vJ /v | J/9 production at large xp

400 GeV | pA — J/vJ/vp | and A(zr) dependence

EMC [9] 280 GeV | uFe — c¢X Anomalously large c¢(x)

at large zp;

E537 [10] 125 GeV | 1A — J/9pX Polarization flip of J/
at large rp

WAS82 [11] 340 GeV | 7~ A — D*X Leading/Nonleading D*

E769 [12] 250 GeV | 7t A — D*X asymmetry

WARS9 [13, 14] | 330 GeV | ¥~ A — H X Leading strange-charm

hadrons and associated

SELEX [15] 650 GeV | ¥~ A and 7~ A | asymmetries

Table 1.1: Experimental evidence for anomalous charm production

As discussed above, although some nonperturbative contributions to charm pro-
duction may be expected, their character cannot be easily be anticipated without

guidance from experimental data. As illustrated in Table 1.1, anomalous charm pro-



duction is often seen at large xr, where zr is the longitudinal fraction of the available
momentum carried by the final state hadron, zr = 2P, /\/s. The deviation of exper-
iments from pQCD calculations often grows as xr — 1. The reasons for anomalous
production at large xy are subtle and are discussed below.

Two important charm puzzles central to this work are the leading charm effect
and the dependence of the cross section on the atomic number of the target as a
function of zp.

The leading charm effect describes a process whereby final state charm hadrons,
which share valence quarks with the projectile, carry a larger fraction of the projectile
momentum than charm hadrons which share no valence quarks. For example, with a
7~ (du) projectile, a final state D~ (d¢) would be leading, due to the common d quark,
while a D*(cd) would be nonleading. The next-to-leading order, NLO, corrections at
leading twist can contribute to small production asymmetries between charm hadrons
and their antiparticles. However, these effects are below the 10% level and cannot
account for the factors of 3 to 10 enhancement seen in some experiments. Such strong
initial-final state correlations are not predicted by leading twist pQCD. This implies
some recombination mechanism may be at work. A breakdown of factorization must
be occurring between long and short scale contributions of the cross section.

The effect is often measured by directly comparing leading twist do/dzy calcula-
tions with the data. However, the effect may become more obvious in particle ratios,
e.g. (do/dxp)p-/(do/dzF)p+, or by some other measure like the leading/nonleading

asymmetry
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(do/dzp)r, — (do/dzp)N,
(dO’/diEF)L + (dU/d-TF)NL .

Alzp) = (1.21)

Leading twist pQCD predicts a linear A dependence of the cross section in hA
interactions, where A is any hadron. For zr < 0.6, a linear dependence is observed in
charm hadroproduction. However, as zr — 1, the dependence approaches ~ A%/3 —
proportional to the cross sectional area, since the nuclear volume scales like A. This
implies the onset of long scale contributions, i.e. from the whole surface of the target,
in charm production at large . This is unexpected because the scale is supposedly
set, by the charm pair mass with M. ~ 3 GeV. Intuitively, even if oy is not small
enough for a reliable perturbative expansion, the charm cross section would seem
insensitive to large scale effects — such as the surface of the nucleus.

Both leading charm and the A dependence at large xr point to multi-parton
processes and thus cannot be adequately described by leading twist pQCD. Although
some nonperturbative effects are expected in charm production, the breakdown of
leading twist at large zp is surprising. Also, the fact that higher twist terms contribute

to the cross section at large xr but not elsewhere requires explanation.

1.3.1 Higher Twist

To gain insight into some of the charm puzzles, the contributions of higher twist
terms are explored. Higher twist terms are added to Eq. (1.20). A more formal
treatment of hadron scattering uses the operator product expansion, OPE, on the

light cone. Here, contributions to the hadronic tensor can be categorized in powers
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of 1/Q? where Q? is the momentum scale of the problem — this might represent the
momentum transfer in DIS or the invariant mass, M, in hadron-hadron interactions.
The suppression factor in the expansion of the hadronic tensor in powers of 1/Q? is
known as the twist. It is defined as the mass dimension of the field operator minus
the spin. A calculation where the long and short scales are factorized and the scale is
hard enough that a perturbative expansion is reliable is leading twist. As described
above, this is the dominant term in the OPE. It insures that there are only single hard
parton-parton interactions contributing to the cross section. Processes with minimal
twist tend to dominate the QCD cross section at high momentum transfer but this is
not always the case: in some regions of phase space there may be competing effects.

Multiparton processes in hadron-hadron interactions tend to be composed of
higher twist operators and are usually suppressed by powers of 1/M?. Naively, they
only seem to contribute when perturbative QCD is unreliable. This occurs when the
momentum scale is small. Higher twist terms in the heavy quark hadroproduction
cross section for a hadron-hadron process would emerge as higher order corrections
to the leading twist cross section in Eq. (1.20),

AZ
0= Z/d$1d$2fi/A($1;M%)fj/B(ﬂCQ,M%“)&ij +0( QQCD)' (1.22)

ij 12574

The terms of O(A{cp/u3) are usually suppressed compared to leading twist par-
ton fusion. Therefore, the hard scale uy ~ M must be large for a leading twist
perturbative expansion to be reliable in QCD. However, in certain regions of phase
space, higher twist terms can contribute to the cross section as much as leading twist

giving seemingly anomalous production rates. This is particularly interesting be-
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cause, if such mechanisms can be understood, it may provide insight into some of the

anomalies seen in charm production.

1.3.2 Intrinsic Charm

The anomalous charm production described previously seems independent of the
parton structure of the target. Also, anomalous production occurs in regions of
large xr where the produced charm hadron carries a large fraction of the projectile
momentum. This prompted the authors of Refs. [16, 17] to speculate on what role
the projectile alone might play in producing charm. In this context, the intrinsic
charm model was developed. Although the model was originally designed for charm
hadroproduction, it can equally be applied to any strongly interacting heavy particle
in a QCD bound state such as a bottom quark or even a gluino. The effects of intrinsic
gluinos are the topic of Chapter 3.

The intrinsic charm model first seeks to characterize the = distribution of the
charm in the sea of the projectile. These higher Fock states are fragile and, after
a soft perturbation from the target, the coherence of the bound state is lost. The
charm quarks can then coalesce with comoving spectator quarks. The charm quark,
much more massive than the light quarks, tends to carry most of the momentum of
the original bound state. After coalescence, charm hadrons carrying a large fraction
of the projectile momentum are then produced.

Independent of projectile-target interactions, the projectile bound state wavefunc-



tion will be a superposition of all possible Fock state configurations

0) = nvlgy) +nglavg) + -+ ngglavaq) + - -+ +1galavQQ) + -+ - (1.23)

Most of these fluctuations are short-lived and the Fock expansion is dominated by
the valence quarks, ¢y, and lighter fluctuations. Some fleeting Fock states include
heavy quarks, @), “produced” internally through higher twist intrinsic mechanisms. In
the limit where the heavy quark fluctuations carry a large fraction of the projectile’s
longitudinal momentum, intrinsic fluctuations can actually dominate and contribute
nontrivially to heavy quark production [18, 19, 20].

A particularly interesting kinematic limit exists where higher twist terms can
contribute to the cross section as much as leading twist at a new hard scale u% =
M?(1 — x). This occurs in the limit where z — 1, M — oo, and pg = Aqcp. Here
x is the momentum fraction of the projectile carried by the heavy quark pair. This
limit is consistent with charm data where some final state charm hadrons are observed
carrying a large fraction of the projectile momentum. This limit is in contrast to the
typical leading twist limit of M — oo and x =constant, giving ug = M — oo.

In the limit # — 1 and M — oo and with the new hard scale u% = Agcp = M?*(1—
), we now expect that the corrections to leading twist, O(Agcp/p3), contribute
nontrivially to the cross section. This is a very interesting result.

In this limit, the Fock state is fragile and can easily be broken up by a soft gluon
coming from the surface of the target. As the heavy quarks are created with x ~ 1,
the entire bound system has a small transverse size, r; ~ 1/M. After creation, the

heavy quarks maintain this size while the rest of the system transversely expands to
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R, ~ 1/Aqcp-

The spectator quarks can then be resolved by a soft perturbation with the modest
transverse momentum k; ~ Aqcp ~ 200 MeV. The system can now easily be brought
on shell, breaking up the coherence of the state and releasing the charm quarks. These
quarks are now free to coalesce with spectator quarks.

A feature of this model is that to “produce” heavy quarks from the bound state
in this limit, the resolving power does not have to be ~ 1/M. Because constituents
of the bound state tend to minimize their invariant mass and move with the same
velocity, intrinsic heavy quarks tend to carry most of the momentum of the state
during its brief lifetime. Therefore, the heavy quarks, if liberated, can contribute,
even dominate, the leading twist production at large x.

Although the heavy quarks themselves have been created at a hard scale set
by M, the system as a whole, from genesis to coalescence, is still dominated by
nonperturbative processes and the behavior of the system will be sensitive to the shape
of the bound state wavefunction. Therefore, a tractable calculational method must
be developed which characterizes the wavefunction. The form of the wavefunction for
an n-particle Fock state can be approximated using the Bethe-Salpeter equation on

the light cone [21]

m d?l

Here, M, is the mass of the parent hadron and 7] = k7, + m7 is the square of the
effective transverse mass of the i*" parton in the bound state. The interaction kernel,

K, is related to the vertex function. In perturbation theory, K is proportional to
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the sum of all irreducible amplitudes between two valence quark configurations. As a
first approximation, the right hand side of Eq. (1.24) is constant and the transverse
momentum of each parton, kr;, is evaluated at its RMS value (k%) Now, the

wavefunction for the n-particle Fock state takes the simple form

1
(M -5, )

i=1" g,

T (z,) o (1.25)

Higher Fock states of the projectile containing heavy quarks have a number of
phenomenological and experimental consequences. For example, such states allow
for diffractive charm production. This may occur when a probe scatters off a pre-
existing charm quark in the hadron bound state. Another interesting consequence is
the leading particle effect, one of the charm puzzles already discussed.

Such initial-final state flavor correlations imply a breakdown of factorization. To
illustrate how leading twist is altered, Eq. (1.20) can be modified to describe the
production cross section for a final state hadron rather than heavy quarks. At leading

twist, we have

D z20) .
og = Z/dZQdiEld.Tgfi/A(ﬂ')l, ,U,%‘)fJ/B(iCQ,/L%)H/ZL(Q)O'” (126)

1,
Hadronization is included in the parton model by introducing a fragmentation func-
tion, Dy/q(2g), which describes the probability for the heavy quark, @, to redistribute
its momentum to a final state hadron, H. The fraction of the heavy quark momentum
retained by the final state hadron is zg. Like the parton distribution functions, the
fragmentation function factorizes at leading twist. This fact assumes that the frag-

mentation function is process independent and thus does not depend on the details of

the initial or final state. It also implies that fragmentation must begin occurring over

29



timescales long compared to the interaction time over which the heavy quarks were
generated. This insures that hadronization occurs “far away” from the interaction
region.

As in the case of all leading twist assumptions, one expects factorization to break
down when the scales involved are nonperturbative —i.e. when M is small. However,
as described above, at fixed scale, higher twist terms can dominate at large x for
heavy quarks. With this reasoning one would expect higher Fock states containing
heavy quarks, which carry a large fraction of the hadron momentum, to contribute
to the breakdown of factorization. This is a surprising result because pQCD makes
no predictions about the breakdown of leading twist under these conditions.

Initial-final state correlations obtained from Fock state wavefunctions can be mod-
eled by an initial state coalescence process. With the approximation for the wave-

function given in Eq. (1.25) the probability distribution is

P g = Nud(1 = %o 7;) (1.27)
I dz; (M7 — S, )

where N, is the normalization constant for the particular n-particle Fock state and
the delta function conserves momentum.

Eq. (1.27) can be modified to include the function C(zx, g, , TH,, .-, Ta,), which
describes the coalescence of the partons, 7, in the initial state into the final state
hadron, H. Here, xy is the momentum fraction of the initial state carried by the
final state hadron while xg; is the momentum fraction of parton j which is in the
initial state and appears as a valence quark in the final state. With the coalescence

function and a delta function to enforce momentum conservation over all x in the
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bound state, the n-particle Fock state wavefunction becomes

dP %/ﬁdxané(l—Zgzlxk)C(xH,mHl,xHQ,...,xHj) (128)
=1

4 (M -y, @iy
Particles in a bound state tend to move with the same velocity on the light cone.
Particles with similar velocities in the initial bound state will tend to coalesce into

bound states themselves after being brought on shell, motivating the use of the sim-

plest coalescence function,
Clem, Try, Ty, -y ;) X 0(TH — Y Twy). (1.29)
J

The details of how the leading and higher twist xr distributions are combined
are discussed extensively in chapters 2 and 3 in the context of the respective systems
studied. The simplest approach is to use a two component model whereby the leading
and higher twist contributions are added together. The leading twist cross section
for a particular process is calculated using Eq. (1.20). The higher twist contribution
for a specific final state, H, is obtained by multiplying the probability distribution,

calculated using Eq. (1.28), by an appropriate weight, W. This gives

do dotT dpPHT
= w . 1.30

The form of W is based on various reasonable physical assumptions. For example, in

charm production by pp interactions

A.ZQCD .
W= "o (1.31)

where the first factor is the expected higher twist contribution O(Agcp/u) in

Eq. (1.22). The inelastic proton-proton cross section provides a standard from which
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the higher twist cross section is scaled. The only remaining unknown is the nor-
malization of the state itself, represented by N, in Eq. (1.28). The normalization
of a particular n-particle Fock state must be approximated based on empirical data.
For example, an upper limit on the normalization of the 5-particle Fock state can be
estimated by assuming it provides the dominant contribution to diffractive charm pro-
duction. Particular normalization assumptions are covered in more detail in Chapters

2 and 3.

1.4 Intrinsic Gluinos

As discussed, the data supporting anomalous charm production are quite exten-
sive. The intrinsic charm model was developed primarily to address these puzzles. It
explains why anomalous charm production occurs primarily in the large xy region of
phase space. Specifically, it addresses leading charm and the coalescence mechanism
by which initial-final state flavor correlations occur. It also describes how the nuclear
target dependence approaches A% at large 2.

The charm mass range is ideally suited for testing the predictions of the intrinsic
charm model. It is natural to ask if the model might apply to other heavy particle
systems. For example, in anticipation that similar “bottom puzzles” might exist,
intrinsic bottom was studied in Ref. [22]. Leading bottom is predicted, but the prob-
ability of finding such a state in a hadron projectile drops rapidly, ~ 1/mZ, compared
to charm. No data are yet available on leading bottom. “Intrinsic strangeness”

certainly exists, but the leading twist production mechanism in Eq. (1.20) will give
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spurious results because «; is so close to unity. A leading strangeness model should
be explored, but through a different avenue for leading twist production.

Having exhausted the options presented by the Standard Model, we turn to super-
symmetry in order to seek new particles with the right sensitivity to the predictions
made by the intrinsic charm model. Supersymmetry, SUSY, offers a rich new spec-
trum of as yet undetected particles.

There are a number of reasons why SUSY is an attractive theory. For example,
the coupling constants of the SU(3) strong and the SU(2)xU(1) electroweak gauge
theories in the Standard Model all change, to different degrees, with momentum scale.
When the momentum scale is near 10> GeV, all three constants nearly converge,
but ultimately diverge. This is tantalizing as it alludes to a grand unified theory,
GUT, where the strong and electroweak forces merge into one force with one coupling
constant. Amazingly, by introducing SUSY into the Standard Model, the coupling
constants converge exactly. SUSY also provides a natural means by which to break
the electroweak symmetry, currently achieved “by hand”.

In the minimal supersymmetric model, MSSM, each Standard Model particle has
a supersymmetric counterpart. Naively, to find the quantum numbers of the SUSY
counterparts to the Standard Model, subtract 1/2 from the spin but otherwise retain
all other quantum numbers. This has the effect of creating fermion/boson partners
for each boson/fermion in the Standard Model. However, the predicted mass scale
for the SUSY counterparts is quite large, on the order of 1 TeV. Thus far, the large
predicted mass of these particles has made confirmation of SUSY prohibitive.

However, there has been some speculation that some SUSY particles are light but
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have as yet escaped detection [23, 24]. One such particle is the SUSY partner to the
gluon, known as the gluino. The gluino is an electromagnetically neutral fermion with
the same color structure as a gluon. The gluino is generally thought to have a mass
of hundreds of GeV. Others have explored the possibility that the gluino is very light
compared the the SUSY scale, lying in the mass range 0 < mz < 5 GeV. When the
gluino mass is so small, bound states of gluinos and other strongly interacting particles
are predicted to form, known collectively as R-hadrons. Although many experiments
are potentially sensitive to light gluino masses and lifetimes, the resulting constraints
are strongly model dependent. R-hadron search results have so far been negative
(25, 26, 27]. Figure 1.1 from Ref. [28] shows the most current “optimistic” model
dependent limits on the light gluino in the mass range 0 < myz < 5 GeV as a function
of the squark mass, the SUSY partner to the light quark.

If the gluino mass is between 1 < mgz < 5 GeV, it is natural to ask if R-hadrons
would possess some of the same anomalous production observed in charm. If so, then
the tools of the intrinsic charm model can be brought to bear on making appropriate

predictions.

1.5 Organization

The remander of this dissertation is organized as follows:
Chapter 2 is a paper published in Nuclear Physics B [29]. Here, using an advanced
two component intrinsic charm model, calculations are performed for X~ A interac-

tions. The do/dzp distributions for final state D™, X2, =% and A} are studied and

c) ¢
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compared to 330 GeV WAS9 data. Also studied are D~ /D*, D, /DJ, and A} /A
asymmetries at WA89. In addition, predictions are made for 650 GeV X~ A and 7~ A
interactions for the SELEX detector at Fermilab as well as 800 GeV pA interactions.

Chapter 3 is a paper submitted to Nuclear Physics B [30] discussing the possibility
of intrinsic gluinos in the proton bound state. This work uses the two component
intrinsic charm model modified for intrinsic gluinos. The do/dzp distributions are
calculated for hypothetical R+, S° and R® hadrons, bound states of gluinos with
quarks and gluons, in 800 GeV pA interactions.

Chapter 4 contains brief closing remarks regarding future prospects for the mea-

surement and modeling of intrinsic states.

My ark(GeV)

LEP1 Z/->00

| | |
1 2 3 4 5
M (GeV)

gluino

Figure 1.1: Regions of excluded light gluino masses in the Myquark — Mgluino Plane.
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Chapter 2

Leading Charm in Hadron-Nucleus
Interactions in the Intrinsic Charm
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ABSTRACT

Leading charm hadrons produced in hadron-nucleus interactions cannot
be adequately described within the parton fusion model. Recent results on
charm baryon production in ¥~ A interactions at 330 GeV with the WA89
detector disagree with fusion predictions. Intrinsic heavy quark pairs in
the ¥~ (dds) wavefunction provide a simple mechanism for producing fast
charm hadrons. We calculate leading charm baryon production from ¥~
7~ and p projectiles in a two component model combining parton fusion
with intrinsic charm. Final state D, X2 =F and A} do/dzp distri-
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2.1 Introduction

One of the most striking features of charm hadroproduction is the leading particle
effect: the strong correlation between the quantum numbers of the projectile and
the final-state charm hadron. For example, more D~ than D% are produced at
large zr in 7~ A — D*X interactions [31, 32, 33, 11, 12]. Such correlations are
remarkable because they explicitly contradict the perturbative QCD factorization
theorem [34] which predicts that heavy quarks hadronize through jet fragmentation
functions independent of the initial state.

While leading charm effects are well established for D mesons, observations of
charm baryons are more rare [35]. Two experiments with ¥~ (dds) beams promise to
clarify the situation in the baryon sector. The hyperon beam, with a strange valence
quark, presents a unique opportunity to study the flavor dependence of leading charm
hadroproduction since both charm and charm-strange baryons can be leading. The
first, WA89, which directs a 330 GeV hyperon beam on carbon and copper targets, has
reported the zp distributions of D~ (de), X2(ddc), =} (usc), and A} (ude) [13] as well as
the D=/D*, D;/D} and A./A. production asymmetries [14]. The second, SELEX
[15], has a large acceptance for forward charm production, enhancing the charm
baryon yield. Their 650 GeV beam, approximately half 7~ (@d) and ¥~ promises to
improve current samples from both beams by up to an order of magnitude. They also
plan to study the A dependence of leading charm.

In previous work [22, 36], a QCD mechanism which produces leading charm at

large xr was introduced. An important feature of the model is coalescence, the
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process through which a charm quark hadronizes by combining with quarks of similar
rapidities, such as projectile spectator valence quarks. In a gauge theory the strongest
attraction is expected to occur when the spectators and the produced quarks have
equal velocities [16]. Thus the coalescence probability should be largest at small
relative rapidity and rather low transverse momentum where the invariant mass of
the Qg system is minimized, enhancing the binding amplitude.

This coalescence occurs in the initial state where the projectile wavefunctions of
e.g. the 77, p and X~ can fluctuate into Fock configurations containing a c¢ pair such

as |udcc), |uudce) or |ddsce) respectively. In these states, two or more gluons are

2

2) relative to parton

attached to the charm quarks, reducing the amplitude by O(«
fusion [22]. The longest-lived fluctuations in states with invariant mass M have a life-
time of O(2P,,,/M?) in the target rest frame where Py, is the projectile momentum.
Since the comoving charm and valence quarks have the same rapidity in these states,
the heavy quarks carry a large fraction of the projectile momentum and can thus
readily combine to produce charm hadrons with large longitudinal momentum. Such
a mechanism can then dominate the hadroproduction rate at large xp. This is the
underlying assumption of the intrinsic charm model [17] in which the wavefunction
fluctuations are initially far off shell. However, they materialize as charm hadrons
when light spectator quarks in the projectile Fock state interact with the target [18].
Since such interactions are strong, charm production will occur primarily on the front
face of the nucleus in the case of a nuclear target. Thus the intrinsic charm mechanism

has a stronger A dependence than charm production by leading-twist fusion.

In this work, we concentrate on the charm hadrons studied by WA89 and SELEX
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in order to further examine the relationship between fragmentation and coalescence
mechanisms. The calculations are made within a two-component model: leading-twist
fusion and intrinsic charm [22, 36, 37, 38|.

Leading particle correlations are also an integral part of the Monte Carlo program
PYTHIA [39] based on the Lund string fragmentation model. In this model it is
assumed that the heavy quarks are produced in the initial state with relatively small
longitudinal momentum fractions by the leading twist fusion processes. In order to
produce a strong leading particle effect at large xp, the string has to accelerate the
heavy quark as it fragments into the final-state heavy hadron. Such a mechanism
demands that large changes of the heavy quark momentum take place in the final
state. Other models of leading charm production by recombination in the final-state
have been suggested [40, 41]. However, in this work we will only compare our results
with the commonly used PYTHIA Monte Carlo.

In this paper, we first discuss the conventional mechanism for charm production
at leading twist, parton fusion, and how the hyperon beam is taken into account in
the model. Section 3 reviews the intrinsic charm model and describes the extension of
the model used in this work. In section 4, we compare our results on ¥~ A interactions
with the WA89 data and make predictions for SELEX with ¥~ and 7~ beams as well

as pA interactions. Finally, we summarize our results.
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2.2 Leading-Twist Charm Production

In this section we briefly review the conventional leading-twist model for the pro-
duction of charm hadrons in ¥X7p, pp and 7~ p interactions. In leading-twist QCD,
heavy quarks are produced by the fusion subprocesses gg — Q@ and ¢g — QQ. The
factorization theorem [34] predicts that fragmentation is independent of the quan-
tum numbers of both the projectile and target. We will also show the corresponding
distributions of charm hadrons predicted by the PYTHIA model [39].

Our calculations are at lowest order in «,. A constant factor K ~ 2 — 3 is
included in the fusion cross section since the next-to-leading order z distribution is
larger than the leading order distribution by an approximately constant factor [42].
An additional factor of two is included to obtain the single charm distribution, twice
the c¢ cross section. Note that neither leading order production nor the next-to-
leading order corrections can produce flavor correlations [43] such as those observed
in leading charm production.

The charm hadron zp distribution, where zp = (2mq//s) sinh y, has the factor-

ized form [38]

do \/g 1 DH/C(Z3) 2
47 _ V5 o [ Han(e o)~ 28 g 2.1
P 5@ xb/ AB(x xb)El o 23 dyo dp7 (2.1)

where a and b are the initial partons, 1 and 2 are the produced charm quarks with
m. = 1.5 GeV, and 3 and 4 are the final-state charm hadrons. The convolution of

the subprocess cross sections for ¢g annihilation and gluon fusion with the parton
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densities is included in Hap(zq4,Ts),

Hap(zq, xp) Z[f Tq) f: .’Eb)"‘f (x )fB( b)]dggﬁ ;‘(:Ca)ff(fvb)dggg , (2.2)

where A and B are the interacting hadrons and the scale dependence of the parton
densities has been suppressed. The subprocess cross sections can be found in Ref. [5].
Since we study c¢ production with several different projectiles, we specify the general

qq convolution for three light flavors:

Z[f za) f7 (w0) + f7 (wa) f7 (20)] = w” (2a)T" (23) + 7" (wa)u” ()

+dA(aca)d (xp) + EA(xa)dB (zp) + 52 (24)5% (25) + 5 (24) 5% (1) (2.3)

Parton distributions of the hyperon are not available. However, using baryon number
and momentum sum rules, a set of parton distributions for the >~ can be inferred

from the proton distributions:

/01 ub(z)dx = /01 d> (z)dz =2 (2.4)
/01 d&(z)dr = /01 s> (z)dr=1. (2.5)

We also identify s?(z) = u* (x). Similar relations can be made for the sea quarks.
The gluon distributions are thus assumed to be the same in the ¥~ and the proton.
Both the GRV LO 94 [44] and MRS D~ [45] parton distribution functions with

U # d # 5 were used. Other, older distributions with a symmetric sea, @ =

& I

produce identical results for > p and pp interactions.
The fragmentation functions, Dy.(z2), describe the hadronization of the charm
quark where z = py/p. is the fraction of the charm quark momentum carried by

the charm hadron, assumed to be collinear to the charm quark. According to the

42



factorization theorem, fragmentation is independent of the initial state and thus can-
not produce flavor correlations, precluding a leading charm effect. This uncorrelated
fragmentation will be modeled by two extremes: a delta function, 6(z — 1), and the
Peterson function [46], extracted from ete~ data. The Peterson function, derived
from a non-hadronic initial state, predicts a softer xy distribution than observed in
hadroproduction, even at moderate xp [38] since the fragmentation decelerates the
charm quark. The parameters of the Peterson function we use here are taken from
ete” studies of D production [47]. Typically fits to charm baryon fragmentation
functions suggest increased deceleration of the charm quark in final-state baryons
relative to mesons. On the other hand, the delta-function assumes that the charm
quark coalesces with a low-x spectator sea quark or a low momentum secondary quark
with little or no momentum loss [38]. This assumption is more consistent with low
pr charm hadroproduction data [32, 48, 49] than Peterson fragmentation.

In Fig. 2.1(a) we show the inclusive zp distributions calculated for both types of
fragmentation in X~ p interactions at 330 GeV. Both sets of parton distributions are
also shown. Very little difference in either total cross section or shape of the zp dis-
tributions can be discerned between the two sets of parton distributions. The delta
function results in harder distributions than those predicted by Peterson fragmen-
tation for zp > 0.2. However, as shown in [13], even with this hard fragmentation
the fusion model cannot account for the shape of leading charm baryon distributions.
Figure 2.1(b) shows the relative contributions from gg fusion and ¢g annihilation to
the total cross section at 650 GeV, the energy of the SELEX beam, using the GRV LO

94 parton densities. Gluon fusion clearly dominates the production until zp = 0.6.
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We have checked that this is also true at the lower energy of the WA89 experiment,
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Figure 2.1: Charm production by leading-twist fusion in ¥.7p interactions. (a) Two
parton distribution functions with two different fragmentation functions are shown
at 330 GeV. The curves show calculations with the MRS D—' parton distributions
with delta function fragmentation (solid) and the Peterson function (dot-dashed)
and with the GRV LO 94 parton distributions with delta function fragmentation
(dashed) and the Peterson function (dotted). In (b) calculations with the GRV LO
94 parton distributions with delta function fragmentation are given at 650 GeV for
the ¢g component (dashed), gg component (dot-dashed) and the total production
cross section (solid). Charm hadron production in PYTHIA 6.115 at 330 GeV is
shown in (c¢) and (d) with the distributions labeled as indicated.

We compare the ¥~ p distributions with those from pp and 7~ p interactions at
the same energies with our two choices of parton distributions in Figs. 2.2 and 2.3

respectively. Since the differences between the ¥~ p and pp xr distributions are rather



small due to the dominance of gluon fusion, in Fig. 2.2(a) we show the ratio ¥ p/pp
at 330 GeV. The differences between >~ p and pp production are somewhat larger for
the GRV LO 94 distributions than the MRS D—’, due to the relative assumptions of
%/d. The GRV LO 94 set is based on more recent data than the MRS D—' and should
thus more accurately reflect the sea quark abundancies in the proton. In contrast,
assumptions concerning charm quark fragmentation do not strongly affect the relative
rates. In Fig. 2.2(b) we see that the relative ¢g contribution to pp production is
somewhat larger at xx &~ 0 than in >~ p production at the same energy but this does
not affect the point where gg fusion ceases to dominate c¢¢ production. The pion
valence distributions are harder, allowing charm production at larger xz than with
a baryon beam, as shown in Fig. 2.3. For the pion, we use the GRV LO pion set
[50] with the GRV LO 94 proton set and with the MRS D—' distributions we use the
SMRS P2 pion distributions [51]. However, the valence @ quark in the 7~ does not
change the relative importance of ¢g annihilation at 650 GeV, as seen in Fig. 2.3(b).
Much lower energies are needed for the 7~ antiquark to lead to dominance of ¢g
annihilation in c¢¢ production.

The charm hadron distributions from PYTHIA 6.115 [39] for the three projectiles
at 330 GeV beam energy are also shown in Figs. 2.1-2.3 (c¢) and (d). The PYTHIA
calculations, based on 107 events, use all default program settings along with the
GRV LO 94 parton distributions. We note that in PYTHIA the hyperon valence quark
distributions are an average of the proton valence distributions, d> = s> = (u£+d?P)/3.
In (c) the D, D, A, and E% z distributions are shown while the D, D, 32 and

=+ distributions are given in (d). The magnitude of the curves reflect the relative
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Figure 2.2: Charm production by leading-twist fusion in pp interactions. (a) The
cross section ratios o,,/0s-, are given for two parton distribution functions with two
different fragmentation functions at 330 GeV. The curves show calculations with the
MRS D—' parton distributions with delta function fragmentation (solid) and the Pe-
terson function (dot-dashed) and with the GRV LO 94 parton distributions with delta
function fragmentation (dashed) and the Peterson function (dotted). In (b) calcula-
tions with the GRV LO 94 parton distributions with delta function fragmentation are
given at 650 GeV for the ¢g component (dashed), gg component (dot-dashed) and the
total production cross section (solid). Charm hadron production in PYTHIA 6.115
at 330 GeV is shown in (c) and (d) with the distributions labeled as indicated.

abundancies of charm hadrons produced by PYTHIA.

The Lund string fragmentation model [39] produces charm quarks at string end-
points. The strings pull the charm quarks toward the opposite endpoints, typically
the beam remnants. When the two string endpoints are moving in the same general

direction, the charm hadron can be produced with larger longitudinal momentum
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Figure 2.3: Charm production by leading-twist fusion in 7~ p interactions. (a) Two
parton distribution functions with two different fragmentation functions are shown
at 330 GeV. The curves show calculations with the MRS D—' parton distributions
with delta function fragmentation (solid) and the Peterson function (dot-dashed)
and with the GRV LO 94 parton distributions with delta function fragmentation
(dashed) and the Peterson function (dotted). In (b) calculations with the GRV LO
94 parton distributions using delta function fragmentation are given at 650 GeV for
the ¢g component (dashed), gg component (dot-dashed) and the total production
cross section (solid). Charm hadron production in PYTHIA 6.115 at 330 GeV is
shown in (c) and (d) with the distributions labeled as indicated.

than the charm quark. In the case where the string invariant mass is too small for
multiple particle production, a single hadron is produced [52], as in the ¥2(ddc) and
Z%(dsc) which share two valence quarks with the ¥~. These distributions have a
minimum at zr ~ 0.3 and 0.1 respectively and a peak at xr ~ 0.8, illustrating the

acceleration undergone by charm quarks by strings with small invariant mass. The
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A. and =7 are also accelerated by string fragmentation but the effect is not as strong
because only one valence quark is in common with the projectile.

In contrast, with a proton beam, as shown in Fig. 2.2, only the A, shows strong
forward acceleration due to the common u and d quarks with the maximum in the
xp distribution occurring at xp ~ 0.8. A second peak is notable for the ES but
the acceleration effect is weaker for charm-strange baryon production, presumably
due to the additional mass of the strange quark. While meson production does
not show any significant leading behavior with a baryon projectile, the situation is
reversed with the 7~ beam where D and D, production is clearly forward of all charm
baryon production, produced centrally in the forward zr region. We will make further

comparisons with PYTHIA when our full model is discussed.

2.3 Intrinsic Particle Production

The wavefunction of a hadron in QCD can be represented as a superposition of
Fock state fluctuations, e.g. |ny), [nyg), [nyQQ), ...components where ny = dds for
a X, uud for a proton and ud for a 7. When the projectile scatters in the target,
the coherence of the Fock components is broken and the fluctuations can hadronize
either by uncorrelated fragmentation as for leading twist production or coalescence
with spectator quarks in the wavefunction [17, 18]. The intrinsic heavy quark Fock
components are generated by virtual interactions such as gg — Q@ where the gluons
couple to two or more projectile valence quarks. The probability to produce QQ

fluctuations scales as o (M,g)/my, relative to leading-twist production [53]. Intrinsic
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QQ Fock states are dominated by configurations with equal rapidity constituents so
that, unlike sea quarks generated from a single parton, the intrinsic heavy quarks
carry a large fraction of the parent momentum [17].

The frame-independent probability distribution of an n—particle ¢¢ Fock state is

dpy
dx;---dzx,

6(1 =3, i)

(mj, — Xiea (M3 /i))?

where N, normalizes the |nce) probability,

= Nnag(Mc—) (26)

’Il
1c?

and n = 4, 5 for meson and baryon
production from the |nycc) configuration. The delta function conserves longitudinal
momentum. The dominant Fock configurations are closest to the light-cone energy

shell and therefore the invariant mass, M? = Y, m?/x;, is minimized where m; =

k7.; + m7 is the effective transverse mass of the i*" particle and =; is the light-cone

momentum fraction. Assuming (E%z) is proportional to the square of the constituent
quark mass, we choose m, = 0.45 GeV, m, = 0.71 GeV, and m. = 1.8 GeV [37, 38].

The intrinsic charm production cross section for a single charm hadron from the

n-particle state can be related to P and the inelastic AN cross section by

12

oi(hN) = PiTCLUIiEVZL—m\Q .

2.7)

The factor of u?/4m? arises from the soft interaction which breaks the coherence
of the Fock state. To set the scale of the coherence factor u we asssume that the
NA3 diffractive J/1 cross section [6] can be attributed to intrinsic charm. In this
experiment the nuclear dependence of J/1 production in 7~ A interactions separates
into a “hard” contribution with a nearly linear A dependence at low xr and a high
zp “diffractive” contribution scaling as A? where 8 = 0.77 for pion and 0.71 for

proton beams, characteristic of soft interactions. Then we assume that the diffractive
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fraction of the production cross section [6] is the same for charmonium and charm
hadrons. In Ref. [22], u? ~ 0.2 GeV? was found, however, calculations with more
recent parton densities suggest that u? ~ 0.1 GeV2. We thus obtain ot (7N) ~ 0.5
pb and o (pN) = 0.7 ub at 200 GeV. We take P> = 0.31%, as determined from an
analysis of the EMC charm structure function data [9, 54]. A recent reanalysis of the
EMC data with next-to-leading order calculations of leading twist and intrinsic charm
electroproduction is consistent with the presence of an intrinsic charm component in
the proton at large xp; of ~ 1% or less [55]. For simplicity, we will always assume
that the total probability for a charm quark in an |nycc) state is 0.31% [9, 54, 55],
regardless of the projectile identity.

The inelastic X7 p cross section has not been measured. However the total and
elastic Ap cross sections have been parameterized for beam momenta less than 200
GeV albeit with large statistical uncertainties. Extrapolating these cross sections
to 330 GeV, we found that o}, > o) at this energy which seems unlikely. To
be conservative, we therefore scaled azi};, down to oiA“p at the highest measured Ap
momentum, 21.0 GeV. We then used the energy dependence of a;,‘;, thereafter as the
energy dependence for ¥~ p interactions at larger values of /s.

There are two ways of producing charm hadrons from intrinsic c¢ states. The first
is by uncorrelated fragmentation, previously discussed in Section 2. Additionally,
if the projectile has the corresponding valence quarks, the charm quark can also
hadronize by coalescence with the valence spectators. The coalescence mechanism
thus introduces flavor correlations between the projectile and the final-state hadrons,

producing e.g. Z%’s with a large fraction of the ¥~ momentum.
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First we briefly discuss charm production by uncorrelated fragmentation. If we

assume that the ¢ quark fragments into a D meson, the D distribution is

dpnF
—t = /dzl_[d:cZ ...da; Dpe(2)6(zp — 2zx.) , (2.8)

These distributions are assumed for all intrinsic charm production by uncorrelated
fragmentation with Dp/.(2) = §(z — 1). We will not use Peterson function fragmen-
tation further in this work.

The coalescence distributions, on the other hand, are specific for the individual
charm hadrons. It is reasonable to assume that the intrinsic charm Fock states are
fragile and can easily materialize into charm hadrons in high-energy, low momentum
transfer reactions through coalesence. These contributions, taken from Ref. [17], do
not include any binding energy of the produced hadrons or any mass effects. The

coalescence contribution to charm hadron production is

APy
— —/l—Icl:UZ ...dxn(s(xH_le —=2h, ). (2.9)

The coalescence function is simply a delta function combining the momentum frac-
tions of the quarks in the Fock state configuration that make up the valence quarks
of the final-state hadron.

We now compare and contrast D~, DT, D, and D} meson and A, X2, =0 and
EF baryon production by coalescence from X7, p and 7~ projectiles. We note that
not all of these hadrons can be produced from the minimal intrinsic charm Fock state
configuration, |nyc€). However, coalescence can also occur within higher fluctuations
of the intrinsic charm Fock state. For example, in the proton, the D* and Z can

be produced by coalescence from |ny cedd) and |nycess) configurations. These higher
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Fock state probabilities can be obtained using earlier results [36, 56]. In a previous
study of ¥ production from |nyccce) states [56] the double intrinsic charm pro-
duction probability, P., was determined assuming that all the measured 1) pairs
[7, 8] arise from these configurations. The resulting upper bound on the model,
Opp = 0¥ (7~ N) = 20 pb set by experiment [7], requires P, ~ 4.4% P [56, 57).
This value can then be used to estimate the probability of light quark pairs in an
intrinsic charm state. We expect that the probability of additional light quark pairs

in the Fock states to be larger than P,

Py 2
P ~ (2) Pec (2.10)

my
leading to Pey = Piqg = 70.4% P, and P =~ 28.5% P.. To go to still higher
configurations, e.g. for ZF production from a 7, one can make the similar assumption
that Piegy = 70.4% Pis.

In Table 2.1 we show the minimum number of partons needed in each configuration
to produce a given charm hadron. When more than the minimal |nyc¢) state is
necessary for coalescence to occur, the additional light quark pairs required in the
state are indicated. While we include the eight particle configuration necessary to
produce a = by coalescence from a 7~ projectile, we will confine our discussion to
charm hadron production from the minimal state and states with one additional ¢g
pair only.

The total intrinsic charm contribution to charm hadron production is a combina-
tion of uncorrelated fragmentation and coalescence. In previous works [22, 36, 37, 38]

only production by uncorrelated fragmentation from the minimal |nyc¢) states and
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Particle | ¥~ (dds) | p(uud) | 7~ (ud)

D~ (do) 5 5 1

D*t(dc) | 7(dd) | 7(dd) | 6(dd)

Ac(ude) | 7(uam) 5 6(un)
¥0(dde) 5 7(dd) | 6(dd)
D; (s¢) 5 7(s3) 6(s3)

Df(se) | 7(s3) 7(s3) 6(s3)

E%(dsc) 5 7(s3) 6(s3)

Ef(usc) | 7(uu) 7(ss) | 8(ssum)

Table 2.1: The lowest number of partons needed in an intrinsic charm Fock state
configuration for the charm particle to be produced by coalescence. Note that 4 and
5 correspond to the minimal |nycc) configuration while the higher states refer to
Iny-cedd) etc.



coalescence from the minimum Fock state configuration was considered. This was be-
cause a significant leading effect is present only in the minimal configuration, i.e. there
is no difference between D* and D~ mesons produced from |nycedd) states. Also,
as more partons are included in the Fock state, the coalescence distributions soften
and approach the fragmentation distributions, eventually producing charm hadrons
with less momentum than uncorrelated fragmentation from the minimal c¢ state if
a sufficient number of ¢ pairs are included. There is then no longer any advantage
to introducing more light quark pairs into the configuration—the relative probabil-
ity will decrease while the potential gain in momentum is not significant. However,
if some fraction of the final-state hadrons are assumed to be produced from higher
Fock configurations, then all possible final-states from those configurations should
also be included. Therefore in this paper, we consider production by fragmentation
and coalescence from the minimal state and the next higher states with u%@, dd and
§S pairs.

The probability distributions, (1/P2)(dP"/dxyg), are given in Figs. 2.4-2.6 for
37, p and 7w~ projectiles respectively. It is clear from Fig. 2.4 that the ¥~ projectile
allows the greatest coalescence production of charm hadrons from the minimal Fock
configuration, Fig. 2.4(a). The charm baryons are quite fast, taking more than 50% of
the projectile momentum. The difference between charm and charm-strange hadron
production is very small due to the strange and light quark mass difference. Because
the strange quark is more massive, it carries a somewhat larger fraction of the ¥~
momentum than the light quarks, resulting in a slightly larger average momentum

for the 22 and the D, relative to the XY and D, on the order of 3-4% as can be seen
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Figure 2.4: Charm hadron production in the intrinsic charm model with a ¥~ pro-
jectile. The probability distributions, (1/P2)(dP2/dxg), for uncorrelated fragmenta-
tion and coalescence are given for the minimal 5-particle Fock state (a) and for the
7-particle Fock states with light quarks ¢ = u, d (b) and with strange quarks (c).
The solid curve in each case is the charm quark distribution which also serves as the
hadron distribution for independent fragmentation. The other curves are the proba-
bility distributions for hadron production by coalescence, including: D~ (dashed), 32
(dot-dashed), =0 (dot-dash-dashed) and D, (dotted). If the shape of the probability
distribution is the same for any two hadrons (such as the X% and the A} in (b)) in a

configuration, it is indicated.

in Tables 2.2 2.3 and 2.4. The ¢ quark distribution itself, leading to uncorrelated
fragmentation, carries ~ 25% of the projectile momentum in the minimal state. This
is reduced by = 35% in the seven-particle Fock configurations. In this model, the
¢ and ¢ probability distributions are identical. We note that these higher configu-

rations can produce, for example, X2 and A, baryons from |nycedd) and |ny-ceuu)
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Figure 2.5: Charm hadron production in the intrinsic charm model with a proton
projectile. The probability distributions, (1/P2)(dPZ/dzy), for uncorrelated frag-
mentation and coalescence are given for the minimal 5-particle Fock state (a) and for
the 7-particle Fock states with light quarks ¢ = u, d (b) and with strange quarks (c).
The solid curve in each case is the charm quark distribution which also serves as the
hadron distribution for independent fragmentation. The other curves are the proba-
bility distributions for hadron production by coalescence, including: D~ (dashed), A}
(dot-dashed), =0 (dot-dash-dashed) and D, (dotted). If the shape of the probability
distribution is the same for any two hadrons (such as the X% and the A} in (b)) in a

configuration, it is indicated.

states respectively with the same probability distribution, shown in Fig. 2.4(b), but
not necessarily with the same relative probability, as we will show shortly. Intro-
ducing an sS pair to the 7-particle configuration reduces the average momentum of
the final state hadron by ~ 2% over the average in the 7-particle configurations with

lighter ¢g pairs. In addition to the reduction of the average momentum of the ¢ quark
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Figure 2.6: Charm hadron production in the intrinsic charm model with a 7~ pro-
jectile. The probability distributions, (1/P2)(dP2/dxg), for uncorrelated fragmenta-
tion and coalescence are given for the minimal 5-particle Fock state (a) and for the
7-particle Fock states with light quarks ¢ = u, d (b) and with strange quarks (c).
The solid curve in each case is the charm quark distribution which also serves as the
hadron distribution for independent fragmentation. The other curves are the proba-
bility distributions for hadron production by coalescence, including: D~ (dashed), A}
(dot-dashed), =0 (dot-dash-dashed) and D, (dotted). If the shape of the probability
distribution is the same for any two hadrons (such as the X% and the A} in (b)) in a
configuration, it is indicated.

in the higher configurations, the final-state charm hadron momentum from this con-
figuration is reduced as well, suggesting that no more significant contribution to the
overall momentum of the final hadron will be obtained by including yet higher Fock
configurations.

While fewer charm hadrons can be directly produced from the minimal config-
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State | Particle | ¥~ (ny = dds) | p(ny = uud) | 7~ (ny = ud)
nyee) | e 0.251 0.256 0.308

| D(do) 0.41 0.419 0.499

7 A (udc) - 0.58 -

7| £9(dde) 0.573 - -

7 D, (sc) 0.427 - -

? =9(dsc) 0.59 - -

Table 2.2: The average value of zp for charm particles produced by coalescence from
Y7, p and 7~ projectiles in |nycé) states. In this case, q@ = v, dd.

uration of a proton projectile, as evident from Fig. 2.5, their average momentum is
somewhat higher than the ¥~ due to the abscence of the strange valence quark. How-
ever, this only affects the final-state average momentum by 1-2%. Final-state charm
hadrons from a pion projectile, shown in Fig. 2.6 have, on average, 20% more momen-
tum than from a baryon projectile because the total velocity is shared between fewer
initial partons. Note also that mesons from a four-particle Fock configuration and

baryons from a six-particle Fock state each receive half of the projectile momentum.

2.4 Model Predictions

We now turn to specific predictions of our model. We begin with the z distribu-

tion of the final-state charm hadrons. The zr distribution for final-state hadron H is
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|y ceqq) c 0.185 | 0.188 | 0.219

” D~(de) = D*(de) | 0.31 | 0.314 | 0.359

” Ac(udc) 0.433 | 0.438 | 0.5
” »0(ddc) 0.433 | 0.438 | 0.5
K Dy (sc) 0.32 - -

? E%(dsc) = Zf (usc) | 0.444 | - -

Table 2.3: The average value of zp for charm particles produced by coalescence from
¥~, pand 7~ projectiles in |nycéqq) states. In this case, ¢§ = u@, dd.

Ny CCS3) c 0.179 | 0.181 | 0.211
” D~ (de) 0.302 | 0.306 | 0.349
7 Ac(udc) - 10429 | -
” 20 (dde) 0.424 | - ;

” D3 (se) = D+ (3c) | 0.312 | 0.316 | 0.361

S

” =0(dsc) 0.434 | 0.439 | 0.5

7 =1 (usc) 0.434 | - -

Table 2.4: The average value of zr for charm particles produced by coalescence from
Y7, p and 7~ projectiles in |nycéss) states. In this case, ¢§ = u@, dd.



the sum of the leading-twist fusion and intrinsic charm components,

H H H
doy'y _ doy; n doy; , (2.11)
d.Z‘F d.iCF d.TF

where do! /dzp is related to dP” /dxp by

dUH ,LLZ dPH

ic __ o_in
=g, D —
drp h 4m? dxp

(2.12)

The probability distribution is the sum of all contributions from the |nyc¢) and the
|nyceqq) configurations with ¢ = u, d, and s and includes uncorrelated fragmenta-
tion and coalescence when appropriate, as described below. We use the same frag-
mentation function, either the delta or Peterson function, to calculate uncorrelated
fragmentation in both leading twist fusion and intrinsic charm. In this section, we
use only the delta function.

Since experimental information on the relative rates of charm hadron produc-
tion is incomplete, we assume that all the lowest lying charm hadrons produced by
uncorrelated fragmentation have equal probability in both leading-twist fusion and
intrinsic charm. There are 10 charm hadrons—and the same number of anticharm
hadrons—if excited charm hadrons such as D* and A} (2593) are excluded. Therefore
the probability distribution for uncorrelated fragmentation into each of these hadrons
is 10% of the total probability. As can be seen in Table 1, only a fraction of the
possible final-state hadrons can be produced by coalescence. We use a simple count-
ing scheme to arrive at the coalescence probability which enhances the production of
leading charm at large z. We note that the combined probability of fragmentation
and coalescence of all charm hadrons cannot exceed the total production probability

of the Fock state configuration. Thus when a particular final-state hadron can be
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produced both by uncorrelated fragmentation and coalescence, we multiply the sum
of the fragmentation and coalescence probabilities by 0.5 to keep the total probability
fixed.

As a concrete example of how the total probability distributions of charm hadron
production from the intrinsic charm model is calculated, we will describe D' and
D~ production from the ¥~ beam in our model in detail. The full complement
of equations for all the final-state charm hadrons from X7, p and 7~ projectiles
considered in this work can be found in the appendix. In the |ddscé) configuration,
there are four final-state hadrons with a valence ¢ quark (229, X2 and J/v) and also
four final-state hadrons with a valence ¢ quark (2D, D, and J/v). Note that the
J/1 has been counted in each category. The D~ is then produced by coalescence with
50% of the total coalescence probability for hadrons with a valence ¢ as well as by
uncorrelated fragmentation of the ¢ while the DT is only produced by uncorrelated

fragmentation from this state. The probability distributions from this minimal Fock

configuration are then

dP 1 (1dR"  1dP¥ (2.13)
dey  2\10 dzp 2 dzp '
P5 P-5F

aPp, _ 1dB (2.14)

where I’ refers to uncorrelated fragmentation and C to coalescence into the specific
final-state with the associated probability distribution, shown in Fig. 2.4(a). The
|ddsceqq) configurations where @ = %, dd and s3 allow coalescence production of
eight final-state hadrons with a valence ¢ and five final-state hadrons with a valence

¢ in each case. We will discuss DT and D~ from each of these configurations in turn.
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When ¢g = wu, the possible hadrons produced by coalescence are: 251, Z9 2A7F,
0, DY and J/+ with a valence ¢ and 2D, Dy, D° and J/1 with a valence €. A
final-state D' can be produced by coalescence from the dd configuration in one of
the eight possible final-state hadrons with a valence ¢ quark (3X2, 32% D™ and J/4)
while the D~ is produced by coalescence in three out of five combinations (3D,
D; and J/1) with a valence ¢. The s5 configuration yields no DT by coalescence—
420, 39, Q%(ssc), D and J/1) are allowed—while 2D~ are allowed out of 5 possible

hadrons with valence ¢ quarks—2D~, 2D and J/4. Finally, the total intrinsic charm

probability distribution for these mesons is:

dPpy- _ 1 (1dP¥  1dPX\ 1 (1dPZE 24P
dzp 2\10 dzp 2 dap 2\10 dzr 5 dap
\(1dPE  3dPIS\ . 1(1dRY 24P 215
dP 1dPX¥ 14PIF 1 (1dPI 1dPI§ 1 dPIF
bt - %c 4 —hew | Z [ — icd = %ied 4 — Zlies (216)

Lastly we note that only fragmentation from the minimal Fock state was included
along with coalescence from the lowest possible configuration in earlier work [22, 36,
38]. This corresponds to the first term of the D~ probability distribution while the
D distribution would be proportional to 0.5((1/10)dP3F /dzy + (1/8)dPS /dxy).
We must also account for the fact that most of the data are taken on nuclear
targets. In this case, the model assumes a linear A dependence for leading-twist
fusion and an A% dependence for the intrinsic charm component [6] where o = 0.77

for pions and 0.71 for protons (and ¥7)
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This A dependence is included in the calculations. The intrinsic charm contribution
to the longitudinal momentum distributions per nucleon is thus reduced for nuclear
targets.

We now compare the model calculations, both the full model of egs. (2.15) and
(2.16) and the simpler model used previously, to the WA89 data [13] on carbon and
copper targets in Fig. 2.7. Since the data are unnormalized, we have normalized all
curves to the first data point. The dot-dashed and dotted curves are results with
the previous simplified model [22, 36, 38] on carbon and copper targets respectively.
The full model is illustrated in the solid and dashed curves for the same targets. The
agreement with the data is quite reasonable given both the low statistics of the data
and our normalization to the first data point rather than fitting the normalization
to the data. The differences in the model distributions are most obvious for the %2,
shown in Fig. 2.7(c). The simpler model emphasizes the coalescence production from
the |nycc) state only. As can be seen from Fig. 2.4 and Tables 2.2 2.3 and 2.4,
the average xp of the coalescence distribution is more than a factor of two larger
than that of a X2 production by independent fragmentation of a ¢ quark, producing a
shoulder in the zx distribution, particularly for the carbon target (dot-dashed curve).
Because the YV is produced by coalescence with ~ 30% less average momentum from
the 7-particle Fock states, the intermediate xy region is partially filled in, resulting
in a smoother xp distribution even though the probability is reduced for the higher
Fock states. Similar results can be seen for the other charm hadrons in Fig. 2.7.

Note that the model results are in much better agreement with the data than

the PYTHIA simulations at the same energy with the default settings, shown in
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Figure 2.7: Model predictions are compared to the ¥~ A data of Ref. [13] for (a) D™,
(b) Af, (c) X% and (d) =F. The solid and dashed curves represent our full model, with
the intrinsic charm probability distributions given in eqgs. (A-1)-(A-8) for carbon and
copper targets respectively. The dot-dashed and dotted curves contrast the results
for carbon and copper targets respectively with the simplified model which considers

only fragmentation from the minimal Fock state and coalescence only from the state
with the minimum number of partons necessary to produce it.

Fig. 2.1(c) and (d). If the PYTHIA predictions are superimposed on Fig. 2.7 with
the same normalization as our model, the PYTHIA results would considerably exceed
the data at large z for the charm baryons. In particular, since the ¢ quark is pulled
forward by a valence dd diquark, the X2 rate from PYTHIA at zp ~ 0.8 would exceed
the data by nearly four orders of magnitude. The differences in the results are also
obvious in Table 2.5 and 2.6 where the average xy of all the model distributions on

a copper target are compared to PYTHIA calculations with a proton target at the
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This Model
Particle | ¥~ Cu (330) | ¥~ Cu (650) | 7~Cu (650) | pCu (800)
D~ (de) 0.192 0.147 0.169 0.120
D+(de) | 0.133 0.112 0.152 0.107
Aclude) | 0.145 0.118 0.154 0.146
S0(dde) | 0.187 0.140 0.154 0.107
D (s¢) |  0.165 0.129 0.151 0.106
Df(sc) 0.132 0.111 0.151 0.105
=0(dse) | 0.221 0.160 0.151 0.106
=f(use) | 0.160 0.126 0.150 0.106

Table 2.5: The average value of xp for charm particles produced in the full model for
37, p and 7~ projectiles on a copper target. The model results are given at 330 GeV
and 650 GeV for X~ Cu interactions, 650 GeV for 7~ Cu interactions and 800 GeV for
pCu interactions.

same energy.
Another way to quantify leading charm production is through the asymmetry

between leading and nonleading charm. The asymmetry is defined as

dO’L/d.TF - dO'NL/d.TF
A = 2.1
(ZUF) dO’L/dl'F+dO'NL/d$F ( 8)

where L represents the leading and N L the nonleading charm hadron. High statistics
data has previously been available only from 7~ beams where a significant enhance-
ment of D~ over D' production was seen at zp > 0.3 [11, 12, 31], in qualitative
agreement with the intrinsic charm calculation of Ref. [22]. The model [36] also cor-

rectly predicted the symmetric production of D and D} mesons and A} and K:
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PYTHIA
Particle | ¥7p (330) | ¥7p (650) | 7~ p (650) | pp (800)
D~ (de) 0.14 0.126 0.254 0.113
D*(de) 0.18 0.159 0.173 0.160
Ao(ude) | 0.54 0.468 0.153 | 0.604
S0(dde) | 0.72 0.707 0.146 0.35
D, (se) | 0.155 0.139 0172 | 0.097
Dr(se) | 0171 0.154 0.16 0.153
=0(dsc) | 0.76 0.767 0.157 | 0.123
=t(usc) | 0.55 0.477 0.156 | 0.155

Table 2.6: The average value of xp for charm particles produced in PHYTHIA for
7, p and 7 projectiles on a copper target. The results are given at 330 GeV and
650 GeV for X~ Cu interactions, 650 GeV for 7~ Cu interactions and 800 GeV for pCu
interactions.



baryons by 7~ beams [35, 49, 58].

Statistics are unfortunately limited on charm production by baryon beams. Re-
cently the WA89 collaboration has presented the D~ /D%, D /D} and A} /K: asym-
metries from their ¥~ data [14]. In Fig. 2.8 we compare our calculations with both
models to this data as well as show a prediction for the asymmetry between the D~
and 22, both of which are produced from the partons of the minimal Fock configu-
ration. The full model gives a larger asymmetry betwen D~ and DT at low xzp than
the simpler assumptions of previous work [22, 36] because D~ production at inter-
mediate z is enhanced by coalescence production from the 7-particle configurations,
see also Fig. 2.7(a). Our results with the full model are in qualitative agreement with
the data, shown in Fig. 2.8(a). The measured D7 /D7 and A} /K, asymmetries are
larger than our predictions at intermediate zr. The probability distribution for K:

in our model is

APy _ 1ap"  1dPET 1 AP 1dPY (219)

Some of the discrepancies between the model and the data may arise from the rela-
tively low statistics of the D, and A, measurements. Our model is also quite crude in
overall normalization for the different final states since we assume that all final-state
hadrons are produced by independent fragmentation with the same probability. Not
enough high statistics data exist yet for us to use experimental absolute production
rates as a guide. The asymmetry between D~ and Z? is interesting because the

|ddsct) state of the ¥~ can be thought of as a virtual D~=? fluctuation, as has been

suggested for proton fluctuations into K+ A [59, 60] and D~A} [60]. The D~/=0 is
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positive at first since the D~ xp distribution is larger at intermediate zr, especially
when the 7-particle configurations are included. At larger zr, the baryon distribu-
tions always lead over charm mesons produced in the same configuration, causing the
D~ /=% asymmetry to approach —1 as zr — 1. Similar results should be expected

from the models of Refs. [59, 60].
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Figure 2.8: Model predictions are compared to the ¥~ A data of Ref. [14] for the
following asymmetries: (a) D~/D%, (b) D, /D} and (c) A /K:, as well as our pre-
diction for the (d) D~/Z? asymmetry. The solid and dashed curves represent our full
model, with the intrinsic charm probability distributions given in egs. (A-1)-(A-8) for
carbon and copper targets respectively. The dot-dashed and dotted curves for carbon
and copper targets respectively contrast the results with the simplified model which
considers only fragmentation from the minimal Fock state and coalescence only from

the state with the minimum number of partons necessary to produce it.

We now turn to predictions of charm hadron production at SELEX with 650 GeV



beams of ¥~ and 7~ [15]. First we give the charm hadron z distributions for 3~ Cu
interactions and the relevant asymmetries in Fig. 2.9. Since the leading-twist fusion

cross section grows faster than o, the average zp of the particles studied decreases

ic
~ 30% from 330 GeV to 650 GeV. A smaller decrease is found from the PYTHIA
model, showing the relative strength of the string fragmentation mechanism, as can
be seen in Table 2.6. The =0 is clearly the hardest distribution, followed by the ¥U.
The =0 leads the X2 because the more massive valence s quark carries more of the 3~
velocity than the d valence quarks. The EF leads the A in the 7-particle u7 state for
the same reason. The D~ and D, also produced from the 5-particle state have the
hardest meson distributions but lag the baryons. The D* and D/ have the softest
distributions with the D7 slightly harder because the quarks in the dd configuration
get slightly more velocity than the s5 configuration with the more massive strange
quarks. The asymmetries, which should be compared to the dashed curves in Fig. 2.8,
are somewhat reduced at higher energies, again due to the larger leading-twist cross
section.

Since SELEX will also measure charm hadroproduction with a 7=~ beam at the
same energy, these predictions are shown in Fig. 2.10. Because only the D~ is pro-
duced from the minimal Fock state configuration, it shows the hardest zp distribution
in Fig. 2.10(a). Note that since c¢¢ production by leading-twist fusion alone is already
significantly harder than the equivalent production by baryon projectiles, the distri-
butions produced by coalescence from 6-particle configurations are not substantially

enhanced over the fusion cross section, even at large zz. The intrinsic charm cross

section is proportional to ¢ which increases with energy more slowly than the
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Figure 2.9: Predictions for charm hadron production are given in our full model
for ¥~ Cu interactions at 650 GeV. The individual zr distributions are given in (a)
and (b). All cross sections are compared to the leading twist fusion calculation in
the solid curve. In (a) the hadron distributions are D~ (dashed), A} (dot-dashed),
=2 (dotted) and D; (dot dashed dashed). In (b) the hadron distributions are DF
(dashed), 39 (dot-dashed), =} (dotted) and D] (dot dashed dashed). Predictions of
the asymmetries are given in (c) for D~ /D" (solid) and D, /D (dashed) while the
prediction for the D~ /=2 asymmetry is given in (d).

leading-twist cross section, further decreasing the predicted leading charm enhance-
ment. Additionally, we note that charm baryons lead mesons produced by coalescence
only in the 6-particle configurations since the baryons take =~ 50% of the pion mo-
mentum while the mesons take less, as seen in Fig. 2.6 and Tables 2.2 2.3 and 2.4.
The PYTHIA distributions in Fig. 2.3, aside from the leading D™, are more central,

also evident from Table 2.6. In Fig. 2.10(c), only the D~/D* asymmetry is shown

70



because the model predicts identical D, and D meson and A, and K: baryon dis-

tributions, see the appendix, hence no asymmetry. We note that the asymmetry is

reduced compared to calculations at lower energy [22].
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Figure 2.10: Predictions for charm hadron production are given in our full model
for 650 GeV 7~ Cu interactions. The individual zr distributions are given in (a) and
(b). All cross sections are compared to the leading twist fusion calculation in the solid
curve. In (a) the hadron distributions are D~ (dashed), A} (dot-dashed), =2 (dotted)
and D; (dot dashed dashed). In (b) the hadron distributions are DT (dashed), 32
(dot-dashed), =F (dotted) and D} (dot dashed dashed). A prediction of the D~ /D™
asymmetry is given in (c).

The primary proton beam for fixed-target experiments at Fermilab is 800 GeV so
for completeness, we also give predictions for a possible pA measurement at this en-

ergy in Fig. 2.11. In this case, the A has the hardest zy distribution followed by the

D~ both of which are produced by coalescence from the 5-particle Fock state. Again,
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the X2 and D* are somewhat harder than the = and D} distributions respectively
due to the relative partitioning of the parton velocity in the 7-particle 4% and dd con-
figurations compared to the 7-particle ss state. The model predicts a strong D~ /D™
asymmetry as well as a D~ /A] asymmetry, comparable to the D~ /=2 asymmetry
predicted for the ¥~ A interactions. On the other hand, the D; /D} asymmetry is
quite weak. Such measurements with a proton beam would provide a useful comple-
ment to a high statistics ¥~ measurement. A comprehensive understanding of data
with proton projectiles has suffered in the past from a lack of statistics and high
precision proton data, compared to that from ¥~ and 7~ projectiles, could eliminate

certain models.

2.5 Summary and Conclusions

We have refined the intrinsic charm model of Refs. [22, 36, 38|, including both
the minimal Fock state and all the configurations with an additional ¢g pair. We
have applied a simple counting scheme to determine the relative contribution of each
state to the final charm hadron distribution. The model compares rather favorably
to the zp distributions measured by WA89 [13] and produces reasonable agreement
with their measured D~/D* asymmetry while falling short of the D /D} and A./A,
data [14] at intermediate zp.

Further, we have made predictions for charm hadron production at the energy
of SELEX for both ¥~ and n~ projectiles. Predictions for production by an 800

GeV proton beam are also given. High statistics data on charm production from a
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Figure 2.11: Predictions for charm hadron production are given in our full model
for pCu interactions at 800 GeV. The individual zr distributions are given in (a)
and (b). All cross sections are compared to the leading twist fusion calculation in
the solid curve. In (a) the hadron distributions are D~ (dashed), A} (dot-dashed),
=0 (dotted) and D; (dot dashed dashed). In (b) the hadron distributions are DF
(dashed), 39 (dot-dashed), =} (dotted) and D] (dot dashed dashed). Predictions of
the asymmetries are given in (c) for D~ /D" (solid) and D, /D (dashed) while the
prediction for the D~ /Al asymmetry is given in (d).

combination of these projectiles could eliminate certain classes of models and perhaps
distinguish between coalescence in the initial state, as in the intrinsic charm model,
and in the final state, as in models such as PYTHIA [39]. The simple counting
scheme employed here could be replaced with relative rates from data. However, the
shapes of the distributions would not change significantly in our model. Therefore a

collection of charm production data could define the role of intrinsic charm in future

73



experiments.
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ABSTRACT

The open light gluino window allows non-trivial higher twist gluino contri-
butions to the proton wave function. Using a two-component model orig-
inally developed for charm hadroproduction, higher twist intrinsic gluino
contributions to final state R-hadron formation are shown to enhance
leading twist production in the forward z region. We calculate R-hadron
production at pp,p, = 800 GeV in pp, pBe, and pCu interactions with light
gluino masses of 1.2, 1.5, 3.5, and 5.0 GeV.
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3.1 Introduction

The gluino is the supersymmetric partner of the gluon. It is an electromagnetically
neutral, adjoint fermion with the same color structure as its boson counterpart. As
yet, no clear experimental evidence of supersymmetric particles has been found. The
most likely reason for this is the large expected mass of the supersymmetric particles
(Asusy ~ 1 TeV). However, an intriguing scenario exists whereby the gluino is not
only the lightest supersymmetric particle but also very light compared to the SUSY
scale, mzg < 100 GeV. This possibility arises naturally in a number of quite attractive
models characterized by special boundary conditions at the grand unification scale
[23, 61] and in certain models of gauge-mediated supersymmetry breaking [62].

Light gluinos are predicted to form relatively light bound states of quarks or gluons
and gluinos called R-hadrons [24]. The lightest predicted R-hadrons include mesinos
(¢qg), two barinos, R*(uudg) and S°(udsg), gluinoballs (§g), and the glueballino
or R’ (gg). The properties of R-hadrons including their mass, decay modes, and
lifetimes depend strongly on the mass of the gluino.

There have been many theoretical and experimental attempts to find evidence for
and/or exclude the light gluino scenario. Searches for R-hadrons produced in fixed
target experiments have been performed for a number of the predicted R-hadron
decay channels [25, 26, 27, 63]. Effects of a light gluino on QCD observables have
been analyzed [64]. Stable particle searches, T decays, beam dump experiments etc.
all have potential sensitivity to the presence of a light gluino or the R-hadrons. A

brief summary of the various possible resulting constraints on a light gluino is given in

7



Ref. [28]. In addition, Ref. [65] claims that mj; > 2.5 —3 GeV is excluded on the basis
of their analysis of OPAL data. Although these various analyses are, in combination,
potentially sensitive to most regions of light gluino mass, all rely on model-dependent
inputs. As a result, we believe that at present it is impossible to definitively exclude
any gluino mass below 4 — 5 GeV. Thus, it is of great interest to find additional
approaches for discovering and/or constraining light gluinos and the R-hadrons.

In this paper, we will explore the possibility of detecting R-hadrons at large xp
in pp and pA fixed-target interactions. Our calculations will be restricted to the
mg ~ 1.2 — 5 GeV region where we can be confident that the semi-perturbative
techniques that we employ are reliable. This region is of particular phenomenological
interest because of the analogy that can be drawn between heavy quark and light
gluino production. Indeed, if the gluino and heavy quark masses are comparable,
one might anticipate observation of hard gluino production analogous to that already
observed in high-zr charm hadroproduction [11, 12, 14, 31, 32, 33]. The leading-
twist pQCD predictions for charm production in pp and pA collisions fail to account
for many features of the high-xr data. These include unexpectedly large production
rates and anomalies such as flavor correlations between the produced hadrons and
the valence spectators, manifested as leading charm and a strong D /D~ asymmetry
in 7~ A interactions [11, 12, 14, 31, 32, 33|, double J/¥ production at large zp [7,
8], and Feynman scaling of J/W¥ production in pA interactions [6, 66], all of which
suggest a breakdown of factorization [34] at large zr. The anomalies and cross section
enhancement may be partly explained by higher twist terms in the operator product

expansion (OPE) on the light cone associated with the dynamics of the QCD bound
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state. Analgous terms should be present for light gluinos.

The intrinsic charm model (IC) [16, 17] approximates non-perturbative higher
twist Fock-state contributions of heavy quarks in hadronic wave functions. The phe-
nomenological predictions of IC directly address the above puzzles in charm hadropro-
duction [22, 29, 36, 37, 38, 56]. For example, IC provides a coalescence mechanism
whereby final state hadrons can share valence quarks with the projectile, naturally
producing leading particles.

In analogy with leading charm, we study R-hadron distributions using “intrinsic
gluinos” (IG) in regions of phase space where the gluino mass and momentum fractions
conspire so that higher twist effects cannot be ignored. In this paper, we calculate
enhancements over the leading twist R-hadrons =z distributions with gluino masses
mg = 1.2, 1.5, 3.5, and 5.0 GeV. Both pp and pA interactions at pj,p, = 800 GeV are

considered.

3.2 pQCD Light Gluino Hadroproduction

In pQCD, gluinos are produced in pairs by gg fusion and ¢g annihilation, gg, ¢qqg —
gg, as well as quark-gluon scattering to squark and gluino, qg — ¢g. Precision Z-
pole data has constrained the squark mass to be greater than 100 GeV, quite large
compared to the light gluino masses considered here. Therefore, we expect that the
qg contribution with the virtual squark in the ¢-channel will be small compared to
the other contributions, particularly at fixed-target energies.

The leading twist inclusive R-hadron zp distribution at leading order is obtained
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from the gluino zp distribution (zr = (2msr//s)sinhy) which has the factorized

form in pQCD

1 DH/ (2’3) 1 dO’z
— dzd d2 g B J
- ok > [ dssyapr g P28 g0 1 ) L %

(3.1)
Here a and b are the initial partons from projectile and target hadrons A and B, 1
and 2 are the produced gluinos, and 3 is the final-state R-hadron. The sum over ¢
and j extends over all partonic gluino production subprocesses. A K factor of 2.5
is included to account for NLO corrections. Since the K factor is approximately
constant with xz for charm production except as xp — 1, we assume that the K
factor for gluino production is also independent of zp.

The fragmentation functions, Dy/5(2) with z = xy /x5 describe the collinear
fragmentation of final state R-hadrons from the produced gluinos. For simplicity, a
delta function was used for hadronization, Dy /;(2) = §(2—1). This assumption results
in the hardest zr distribution at leading twist since the R-hadron carries all of the
gluino’s momentum. Other fragmentation functions would soften these distributions.
Note that for any fragmentation function to factorize, it must be independent of
the initial state (i.e. it only depends on z3 and not x,). Thus, regardless of the
fragmentation function used, all R-hadrons will be decoupled from the initial state

to leading twist.

The partonic cross sections for gluino production in Eq. (3.1) are [67]

d6ggg55 _ITr; 2(mjg — £) (i — m3) mg(8 — 4mj)
di 482 82 (m2 — )4 — m2)
2 _N\(h 2 2,2 2 N
(m3 —8) (4 —m3) — 2mi(mZ +1)  (m} —1)(4 —m2) + mi(a — 1)

+ =
(mgg)_t)Q 8(m g ﬂ
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We calculate leading twist pQCD gluino distributions for 800 GeV pp interactions.
Figure 3.1 shows the gluino distributions using the MRS D-’ parton distributions
in the proton [45] with m; = 1.2,1.5,3.5, and 5.0 GeV and m; = 100 GeV. The
characteristic falloff at large zr is similar to heavy quark production. Choosing a
larger squark mass would only marginally decrease the total cross section because
the gq channel is suppressed by the large squark mass. The gluino production cross
section is a strong function of mass. The cross section is largest for mz; = 1.2 GeV
and decreases by a factor of 3 for mz = 1.5 GeV. There is then a drop of 250 to
the mgz = 3.5 GeV gluino cross section and another factor of 20 between the 3.5 and
5 GeV cross sections. Additionally, the falloff of the cross section with z becomes
steeper as mj is increased.

Charm hadroproduction phenomenology has taught us that higher twist contri-
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Figure 3.1: 800 GeV QCD pp gluino production for several gluino masses. The curves
are my = 1.2 GeV (solid), 1.5 GeV (dashed), 3.5 GeV (dot-dashed), and 5.0 GeV
(dotted).

butions can become comparable to leading twist in certain parts of phase space,
introducing correlations between the initial and final states. These effects will be

addressed in the next section.

3.3 Intrinsic Contribution to Higher Twist

In deep inelastic scattering, higher twist terms in the OPE are suppressed by a fac-
tor of 1/Q?". These terms are essentially irrelevant when Q? is large. Analogously, in

hadroproduction, a similar suppression of 1/M? typically renders higher-twist effects
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unimportant except in regions where pQCD is seemingly inapplicable (i.e. where M?
is small). However, it has been shown that in the simultaneous M? — oo and z — 1
limit with M?(1—x) fixed, a new hard scale emerges where higher twist contributions
to the cross section become comparable to leading twist [18, 19, 20]. In the case of
heavy quark production, this new scale can be associated with either the resolution
of the transverse size of the intrinsic heavy quark pair or with the transverse reso-
lution of any “pre-coalesced” hadrons inside the parent hadron. The heavy quark
fluctuations can carry a large fraction of the projectile’s forward momentum since the
constituents of the bound state move with the same velocity. The Fock state may
be broken up by an interaction with soft gluons in the target, producing a leading
hadron containing a heavy parton.

The bound state wave function for a state containing higher-twist contributions
can be obtained from the Bethe-Salpeter formalism evaluated at equal “time” on the

light cone [17, 21]:

A? d?ly]
(M2 - Einzl i xz; kT / [d ]/ [16 1; Zi, kTi; Yi, lTi; MZ)\II(yZ.’ lTl) (35)

where M is the mass of the projectile hadron. The transverse mass of an individual
parton is defined by ;> = k%, +m?, where kr, is the transverse momentum of the i*"
parton in the n-particle Fock state, |qi, ..., ¢, ..., ¢»). The momentum fraction of the 2
parton in the Fock state is z;, [dy] = II7, dy;0(1 — X7, y;) is a longitudinal momentum
conserving metric and [d?ly] = IT%_, d®l7,6%(S™, Iz,). The interaction kernel is K.
The simplest way to create final state hadron distributions from a specific Fock

state wave function is now described. The vertex function on the right hand side
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of Eq. (3.5) is assumed to be slowly varying with momentum. The operator on the
left hand side of the equation is then evaluated at the average transverse momentum
of each parton, (k%), with the constraint E?ETZ. = (0. With these assumptions, the
transverse mass of each parton is fixed and the vertex function becomes constant. The
probability distribution is then proportional to the square of the wave function which
is now inversely proportional to the off-shell parameter A = M? —¥"_ (m?)/x; where
(12

?) is the average transverse mass squared of the :*" parton. After longitudinal

momentum conservation is specified by §(1 — X7 ,z;), the probability distribution

becomes

d"Pp (21, ..., Tp)

=N,6(1 =X, 2;)A™2 .
T o o(1 = Xiz) (3.6)

where NV, is the normalization constant for an n-particle distribution. The probabil-
ity distributions as a function of z for any final state hadron can be generated by
integrating Eq. (3.6) including final state coalescence constraints.

The characteristic shape of the longitudinal momentum distribution of the final
state hadron can now be obtained up to an overall normalization constant. The
important feature of this model is that final state particles are not “produced” in
a collision, as such, but are rather “intrinsic” to the projectile’s Fock state and are
liberated after a soft interaction with the target. This intrinsic source of final state
particles acts as a perturbation to the dominant parton fusion mechanism. However,
unlike parton fusion, it incorporates flavor correlations between the initial and final
states. This mechanism will dominate the total cross section in the limit zp — 1

since xr ~ = when the final-state hadron evolves directly from the projectile wave
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function.

In this paper, we assume that the model developed for heavy quark hadroproduc-
tion at higher twist can be applied to gluino production in the proton wave function.
Final-state R-hadron production from IG states is described in the remainder of this
section along with its relationship to IC production. The characteristic shapes of the
intrinsic distributions in the proton were generated for the gluino alone and for the
RT(uudg) and S°(udsg), and the R%(gg). In all cases, the “minimal Fock state” was
used to generate the final state coalescence. This emphasizes the most leading final
states.

The gluino can fragment into a R-hadron, just as in pQCD production. In this

uncorrelated case [68], the hadron x distribution is

dPkF k. Dy
—9 - Nk/Hledacde(S(l — sz)m

=1

- §(zy — 2x5) A7, (3.7)

where k indicates the order of the Fock state containing the intrinsic gluinos (i.e. the
z3's are included among the z;). Gluinos are produced in pairs because other super-
symmetric vertices involving squarks and photinos are highly suppressed due to their
much greater masses. The minimal proton Fock state with a gluino pair then has five
particles, |uudgg). Fragmentation of other, higher, Fock states will have a smaller
production probability and produce gluinos with lower average momentum. For con-
sistency with the coalescence production described below, we include fragmentation
of six and seven particle Fock states with R and S° production respectively.
R-hadron production by coalescence is specific to each hadron. The intrinsic gluino

Fock states are fragile and can easily collapse into a new hadronic state through a
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soft interaction with the target, as is the case for IC states. The coalescence func-
tion is assumed to be a delta function. The momentum fraction of the of the final
state hadron is the sum of the momentum fractions of the of the R-hadron valence
constituents from the proton wave function. The three R-hadrons we consider are all
calculated from only the minimal Fock state required for their production by coales-
cence. Thus, only the most leading configuration is used. As in the fragmentation
case in Eq. (3.7), including higher Fock components does not significantly increase
the total rate because the other Fock state probabilities are smaller and also does
not enhance the yield at large xr because the average xp of coalescence is reduced
relative to that from the minimal Fock state.

The five-particle Fock state |uudgg) produces the most leading R-hadron, the R*,

because the R* is generated from four of the five constituents of the Fock state.

dP~5~C 5
y ¥ = N5P8/H?:1da:j(5(1 =" 2)0(TR+ — Ty — Ty — Tg — 15) A2 (3.8)
TR+ i=1

Here, P2 is a factor incorporating the coalescence probability given the five-constituent
Fock state. Note that in this case, the RT zp distribution is proportional to the gluino
distribution in Eq. (3.7), obtained by setting Dy/3(2) = 0(1—z), with k£ = 5 evaluated
at 1 —zp.

The R° is generated from a six-particle Fock state, |uudggg). Unlike the gluinos,
single gluons can be included in the higher-twist Fock state since one gluon can couple
to two quarks in the Fock state. The six-particle state is the most leading state for

R production. The coalescence of R hadrons is described by

szG”C 6 6 d —2
I — NgPS / M°_,da;0(1 = 3 2:)0(my — 2 — 25) A2 (3.9)

=1

dx RO
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The last R-hadron we consider is the S° which, since it contains an s quark, must
be produced from a seven-particle Fock state, |uudssgg). The S will have a harder
xp distribution than the R? even though the average momentum fraction of each
constituent in the seven-particle state is smaller than those of the six-particle state.
This harder xy distribution is due to the greater number of S° constituents, four,

rather than the two R° constituents. In this case,

dP_?_C 7
Y= N7P5/H;:1da:j5(1 = %)0(xs5, — Tu — Ta — T — x5) AT (3.10)

i=1

dxso

In what follows, the coalescence probabilities P appearing in Eqs. (3.8), (3.9),(3.10)

are taken to be unity. That is, it is assumed that the gluinos will always coalesce.

Figure 3.2 shows (using arbitrary normalization) the characteristic  dependence
of the probability distributions in Egs. (3.7)-(3.10) with myz = 1.2 GeV. The single
gluino distribution is calculated using k¥ = 5 and Dy/3(2) = 6(1 — 2) in Eq. (3.7).
R-hadrons produced by uncorrelated fragmentation have the softest zr distributions,
(z3) = 0.24 when k = 5. Contributions from progressively higher single gluino Fock
states have smaller relative probabilities, as we discuss below, and a decreased (z;),
which would eventually build up a gluino sea in the proton. The distributions from
coalescence are all forward of the single gluino distribution. As expected, since the
R* takes all three of the proton valence quarks, it is the most leading R-hadron with
(xg+) = 0.76. The distributions for the other final state particles, the Sy and the Ry,
are softer with (xg0) = 0.56 and (x o) = 0.35 respectively.

We have shown the results with the lowest gluino mass we consider. Increasing the

mass increases the average xr of the gluino distribution of uncorrelated fragmentation,
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Figure 3.2: The z distribution of intrinsic R-hadrons in the proton with mg; = 1.2
GeV. The curves are g (solid), R® (dashed), S° (dot-dashed), and R* (dotted).

Eq. (3.7), but leaves the average xr of the R hadrons unchanged in the mass range
we consider.
The intrinsic gluino production cross section for R-hadrons, from an n-particle

Fock state is written by analogy with the IC cross section

2
n 1
053 (pp) = G Piais(mag)og s
9

(3.11)

where G is a color factor. The inelastic pp cross section is ~ 35 mb at 800 GeV.
The ratio p?/ 4m§ sets the scale at which the higher and leading twist contributions
are comparable. We use pu? ~ 0.2 GeV?, consistent with attributing the diffractive

fraction of the total J/1¢ production cross section to IC [22, 29, 36]. There is a
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factor of o because the intrinsic state couples to two of the projectile valence quarks.
The higher-twist contribution then contains two more powers of s than the leading-
twist contribution. This factor is included in the cross section rather than in the
probability distributions as done previously [22, 29] to more explicitly show the effect
of this dependence on the cross section when the mass of the intrinsic state is changed.

Since the intrinsic charm cross section is [22]

2

in M
C
the two cross sections are related by
ois(pp) _ GePg i of(mgg)
e W v (3.13)

7o) PE g ad(me)
The relative color factor between intrinsic gluinos and intrinsic charm, represented
by Ge, may enhance the IG contribution over that of IC because of the color octet
nature of the gluino. However, in this work, to isolate mass effects, we assume the
color factors for IG are the same as IC, setting G = 1. Changing G¢ would effectively
scale the cross section ratio in Eq. (3.13) by a constant factor. The overall effect of
changing G is small relative to the leading-twist cross section unless G¢ is very large.
The intrinsic charm mass is used as the scale from which to approximately evolve the
intrinsic gluino cross section as previously done for intrinsic beauty [22]. Note that
when G¢ = 1, if iy = ., the IG and IC cross sections are the same. The IG cross
sections are normalized by scaling Pj; in proportion to P, as described below.

A limit of P2 = 0.31% was placed on the intrinsic charm probability in the five-
particle state |uudc€) by charm structure function data [9, 54, 55]. The higher Fock

state probabilities were obtained from an estimate of double J/¥ production [7, 8],
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resulting in P/, ~ 4.4%P2 [56]. Mass scaling was used to obtain the mixed intrinsic

charm probabilities, P}~ (m./m,)?P{, [36]. To obtain the n-particle gluino Fock

igc

state probabilities, Pj, we assume that the same relationships hold for the gluino

states. The five-particle gluino state then scales as

52
me

~ 2
mg

P> . (3.14)

5
Py =

Assuming PL. = 4.4% P~

G5 ;5> the seven-particle Fock state probabilities are

~ 9
P — mMe 57
iqg — mg igg

(3.15)

Thus, if mg = 7., P2 = P and P, = PZ.. For simplicity, the probability for
the mixed gluon-gluino proton six-particle Fock state was set equal to the seven-
particle mixed probability with 1, = m,. The effective transverse masses used were

my = my = 0.45 GeV, m; = 0.71 GeV, and m, = 1.8 GeV. The transverse mass of

the gluino, my, is fixed to the values of m; used in the leading twist calculation.

3.4 Composite Model Predictions

In this section, we calculate the total zr distribution of final-state R-hadrons
including both leading- and higher-twist contributions. The model predictions for
R*, R® and S° production on proton and nuclear targets are then given at 800 GeV.

The final state do/dxp distribution is the sum of the leading twist pQCD distri-
bution and the higher twist intrinsic contributions. Since many experiments use a

nuclear target, the characteristic A dependence of each contribution is included,

do _ g9ou | 8% (3.16)
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The first term is the leading twist term whereas the second term is the higher twist IG
contribution. Leading twist necessarily involves single parton interactions between the
target and the projectile and thus cannot account for collective nuclear effects. Thus,
the leading twist cross section scales linearly with the number of nucleons in the target
modulo nuclear shadowing effects. The nuclear dependence of J/v production in pA
interactions shows that if the nuclear dependence is parameterized by A% o — 2/3
as xp — 1 [6, 66]. The emergence of this surface effect at large zp is consistent with
spectators in the projectile coupling to soft gluons from the front face of the target
rather than the volume. The NA3 collaboration extracted the A dependence of J/1)
production at large xp and obtained § = 0.71 in Eq. (3.16) [6]. We use the same
value of  for charm production since the available data on the charm A dependence
[69] leads us to expect a similar A dependence for charm and .J/v production at large
Tp.

The intrinsic gluino contribution to R-hadron production includes contributions
from both hadronization of single gluinos by uncorrelated fragmentation, Eq. (3.7),
and coalescence into final-state R-hadrons, described in Eqgs. (3.8)-(3.10). That is,

APy _ 4Py

d.iCF ! de

nC
Py,

2
d.TF

+& (3.17)

where P¥ and PJC are the IG contributions from fragmentation and coalescence
respectively. The parameters & and & allow adjustment of the relative gluino frag-
mentation and coalescence contributions. We used single gluino fragmentation from

the same Fock state as the coalesced hadron. That is, for R, k = 5 in Eq. (3.7),

while ¥ = 6 for R® and k = 7 for S°. We fix & = & = 0.5 for simplicity. For a
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more realistic accounting of all possible contributions to Eq. (3.17) for charm produc-
tion, see Ref. [29] for relative charm hadron production probabilities in the proton.
The respective fragmentation and coalescence probability distributions in Eq. (3.17)
are converted to cross sections using Eq. (3.11) and added to the leading twist cross
section as in Eq. (3.16).

We calculate R-hadron production at 800 GeV in pp, pBe, and pCu interactions
with mzg = my = 1.2, 1.5, 3.5, and 5.0 GeV. Delta function fragmentation was used
for single intrinsic gluino production by uncorrelated fragmentation and for leading
twist hadronization. That is, we take Dp/3(2) = 6(1 — 2) in Egs. (3.1) and (3.7).

Figure 3.3 shows the normalized R-hadron xp distributions calculated according
to Eq. (3.11) in pp interactions with my; = 1.2 GeV. The difference in the yields as
xrp — 0 is due to the difference in probability for the five, six, and seven particle
Fock states. The R? and S° cross sections are similar at low zx because we have

assumed PS. = P’

195 7q50 s described in the previous section. However, the shapes are

different at low zr because the probability distribution for uncorrelated fragmentation
has a smaller average (zp) when £ = 7 in Eq. (3.7). The R™ has the largest cross
section of the three hadrons. Its distribution is symmetric around xr = 0.5 because
the fragmentation yield and the R* yield from coalescence are symmetric in the five
particle Fock state. The S° yield increases near zp ~ 0.25 due to the forward peak
of the S° coalescence distribution seen in Fig. 3.2. The yield at low zp is relatively
reduced because the fragmentation calculation with £ = 7 is narrower so that the two
peaks are effectively separated in Fig. 3.2. Since the fragmentation peak for £ = 6

and the R° coalescence distribution lie close together, they blend into a broad peak
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for the R® z distribution.
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Figure 3.3: Intrinsic gluino higher twist contributions to intrinsic gluino do;z/dzp in
R-hadron production with mgz = 1.2 GeV. The solid curve is R*, the dotted curve
is RY, and the dashed curve is S°. Each distribution includes the contribution from
independent uncorrelated fragmentation of a gluino.

Figures 3.4, 3.5, and 3.6 show the predicted R*, S°, and R® zp distributions
per nucleon in pp, pBe, and pCu interactions at 800 GeV calculated according to
Eq. (3.16). Each figure includes all four gluino masses. As zr — 0 the zp distributions
of all targets are equal for a given mg. This indicates the dominance of leading
twist production at low xg, independent of the final state. As zz — 1 the higher

twist terms begin to contribute. These higher twist effects are suppressed in nuclear

targets because of their slower relative growth as a function of A compared to the
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leading twist A dependence. Although larger mass gluinos are more difficult to create,
the relative contribution to the total cross section from higher-twist production in
Eq. (3.16) increases with gluino mass because of the slower decrease of the intrinsic
gluino contribution relative to the mass suppression of the leading twist cross section.
The greater mass suppression of the leading twist cross section also influences the
value of xr where the higher twist contribution begins to appear. Increasing the
gluino mass leads to intrinsic gluino effects appearing at lower xr. This effect is seen
in Figs. 3.4-3.6. When mg = 1.2, IG effects become obvious near zx ~ 0.5 while IG
contributions begin to appear for zp ~ 0.2 in R° production when mz; = 5.0 GeV.

Dramatic leading effects are predicted for the RT which, as pointed out above,
shares three valence quarks with the proton in a minimal five-particle Fock state
configuration. This characteristic “hardening” of the xp distribution for xp > 0.6
should be clear in a successful R™ search. However, the leading effects are also
present for the other particles. The S° is the next hardest distribution, sharing two
valence quarks with the proton while the R° tends to be the softest, since no projectile
valence quarks are shared.

For a clearer comparison of the leading effects predicted for each final state R-
hadron, Figs. 3.7-3.10 show the R*, S°, and R® distributions together in pp inter-
actions with mz = 1.2,1.5,3.5, and 5.0 GeV respectively. The leading twist gluino
distribution is also shown for comparison. In each case, the intrinsic contribution
begins to emerge from the leading twist calculation between zp ~ 0.2 and zp ~ 0.4.
In Fig. 3.8, with mz = 1.5 GeV, the predicted R* enhancement at zz ~ 0.8 is about

700 times larger than the leading twist prediction. At the same value of m; and
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Figure 3.4: R* xp distribution from 800 GeV protons on various targets. Four gluino
masses are chosen, myz = 1.2 GeV (top), 1.5 GeV, 3.5 GeV, and 5.0 GeV (bottom).
For each mass, there is a triplet of curves representing different targets: proton (solid),
Be (dashed), and Cu (dotted).

xr, the SO contribution is about 40 times greater while the R is just under 6 times
greater. When the gluino mass is increased to mz = 5.0 GeV, shown in Fig. 3.10, the
R® dominates R-hadron yields for zz < 0.6. This is a consequence of the increased
(xp) for single gluino fragmentation at the larger mass. Although the cross sections
are small at myz = 5.0 GeV since the gluino mass is comparable to the bottom mass,
the predicted enhancements over the leading-twist baseline are quite large: 2.5 x 103
for the R, 1.6 x 103 for the S°, and 281 for the R°. The enhancements are in fact

larger than those with smaller gluino masses due to the greater mass suppression of
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Figure 3.5: S° zp distribution from 800 GeV protons on various targets. Four gluino
masses are chosen, mgz = 1.2 GeV (top), 1.5 GeV, 3.5 GeV, and 5.0 GeV (bottom).
For each mass, there is a triplet of curves representing different targets: proton (solid),
Be (dashed), and Cu (dotted).

the leading twist cross section.

3.5 Conclusions

The light gluino window opens the possibility of non-trivial higher twist gluino
contributions to the proton wave function. In analogy to charm hadroproduction,
intrinsic gluino Fock components contribute to final state R-hadron formation, en-
hancing gluino production over leading twist parton fusion in the forward zp region.

In this work, we have studied a “maximally leading” scenario for final state R-
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Figure 3.6: R® xy distribution from 800 GeV protons on various targets. Four gluino
masses are chosen, mgz = 1.2 GeV (top), 1.5 GeV, 3.5 GeV, and 5.0 GeV (bottom).
For each mass, there is a triplet of curves representing different targets: proton (solid),
Be (dashed), and Cu (dotted).

hadrons in pp and pA interactions at 800 GeV. Our model predicts that the contribu-
tions of higher-twist intrinsic states lead to strong flavor correlations between initial
and final states for xr > 0.6. The large intrinsic gluino enhancements at high xg
over the leading-twist predictions imply that this region of phase space could be es-
pecially appropriate for R-hadron searches in the light gluino scenario. For m; in the
1—5 GeV range, a mass region where substantial evidence for the analogous intrinsic
heavy quark states exists and for which our computational techniques should be most

reliable, the enhancements are very significant (factors of several hundred to several
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thousand being common). The magnitudes we predict for these enhancements may
even be conservative since the increased color factor associated with intrinsic gluinos

compared to intrinsic charm has been neglected.
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Figure 3.7: Intrinsic gluino enhancement to xp distribution for various R-hadrons
with mg = 1.2 GeV. The lower curve is the fusion baseline for gluino production
with a delta function fragmentation. The curves are R (solid), S° (dashed), R°
(dot-dashed), and the leading twist gluino production (dotted).
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Figure 3.8: Intrinsic gluino enhancement to zp distribution for various R-hadrons
with mz = 1.5 GeV. The lower curve is the fusion baseline for gluino production
with a delta function fragmentation. The curves are R* (solid), S® (dashed), R°
(dot-dashed), and the leading twist gluino production (dotted).
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Figure 3.9: Intrinsic gluino enhancement to zp distribution for various R-hadrons
with mz = 3.5 GeV. The lower curve is the fusion baseline for gluino production
with a delta function fragmentation. The curves are R* (solid), S® (dashed), R°
(dot-dashed), and the leading twist gluino production (dotted).
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Figure 3.10: Intrinsic gluino enhancement to zp distribution for various R-hadrons
with mz = 5.0 GeV. The lower curve is the fusion baseline for gluino production
with a delta function fragmentation. The curves are R* (solid), S® (dashed), R°
(dot-dashed), and the leading twist gluino production (dotted).
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Chapter 4

Closing Remarks



Intrinsic models, such as those considered in this work, are interesting because they
help illuminate the boundary between perturbative and nonperturbative QCD. Where
data are available, intrinsic calculations are in overall agreement with experiment.
This gives strong support for intrinsic heavy quark states and the subsequent initial
state coalescence mechanisms presented herein. However, measurements in the large
xr region of phase space, where these effects are accentuated, are difficult and better
statistics are still required. The best data concern D meson production with 7 and
>~ beams. There is still plenty of room for exploration. Data concerning leading
charm produced in pp and pA interactions are sparse while charm baryon production
for all beams is still not well measured.

Since publication of the paper presented in Chapter 2, SELEX has completed
data acquisition and has started their analysis. These data will provide the highest
statistics for leading charm and leading charm-strange hadrons yet available. As
analysis continues, comparisons with the predictions made in Chapter 2 will soon be
possible.

There are also realistic, but somewhat more exotic, systems where the intrinsic
charm model can be applied. There are those who want to look for doubly and triply
charm baryons. The two-component model can be applied to these systems assuming
one could handle the perturbative production of multiple heavy quark pairs. More-
over, the intrinsic charm model could realistically be applied to kaon beams where one
would have leading D, mesons and the associated leading-nonleading asymmetries.

Furthermore, large x measurements of the charm structure function in DIS may

provide further support for intrinsic heavy quark states. With better statistics, if
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anomalously high charm production is found at large x, this would confirm the EMC
data which originally motivated the development of the intrinsic charm model.

Although somewhat speculative, intrinsic gluino states, as explored in Chapter
3, may be an inevitability of the light gluino scenario. A modified intrinsic charm
model makes quantitative predictions about nontrivial intrinsic gluino enhancements
to the zp spectra of R-hadrons. These predictions may motivate experimentalists to
consider investigating the large xr region of phase space in their search for the light
gluino.

One possible future project involves the calculation of the contribution of intrinsic
strangeness to the hadroproduction of leading strange particles. Here the primary
challenge will be to characterize the the leading twist contribution since pQCD will
be unreliable. Furthermore, higher twist intrinsic strangeness contributions can be
directly compared to strange quark parton distribution functions obtained from global
analysis. This will give some insight into the mass scaling normalization methodology
currently used for intrinsic states.

In closing, prospects for further exploring the presence of intrinsic states in hadrons

look promising.
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Appendix



Here we give the probability distributions for D=, D*, D and D/} mesons and
AF, X2 =% and = baryons for production by the minimal and first three higher Fock
state configurations from 7, proton and 7~ projectiles. The probability distributions
for each final state are given in Figs. 3.12-2.6. We note that the predictions for Af
and X1 are identical in all cases because their quark content is the same. Recall that

P} =0.31%, PI, = P1, =70.4% P} and P}

icu i 7 =28.5% P2.

We begin with the ¥~. In the |ddsc¢) configuration, there are four final-state
hadrons with a valence ¢ quark (222, 9 and J/+) and also four final-state hadrons
with a valence ¢ quark (2D~, D, and J/v). The |ddsccqg) configurations where
qq = u, dd and s3 allow coalescence production of eight possible final-state hadrons
with a valence ¢ and five possible final-state hadrons with a valence €. When ¢g = u7,
the possible hadrons produced by coalescence are 2=}, 20 2A+, 3% D% and J/v with
a valence cand 2D, D, D’ and J /1 with a valence €. The dd configuration allows
coalescence production of the following hadrons with a valence ¢ quark, 3%2, 322 D+
and J/v, and, with a valence ¢, 3D~, D; and J/v. The s3 configuration yields 429,

¥0 Q%ssc), Df and J/1 while the final-state valence ¢ quarks hadrons are 2D,

2D; and J/v. We have:

dPp- _ 1 (1dRY" AR\ 1 (1 4P 2dPg
LL(1 AR 3dPIE\ 1 (1 dPE  2dPK "
dP, 1dP3¥ 1dPEF 1 (1dPf 1dP§ 1 dP’F
D+ = e 4 = Pliew | 2 7 icd = %ied 4 Zes (A-Q)
APy _ 1A L(LAPE LAPISY | LdPELAPIE
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d Py
dz F

dP,-

dl‘F

1
10 d
1 dRZ§ 3 dPi§ 1 dP  1dPY
(10 drr 8 dxp> (10 drr 8 d:cp>
1 dP5F 1dP3¢ 1(1dPT 14PI¢
10 dep 4 dar ) 2 <10 dep 5 dop )
(1 By 1 dRZﬁ’) L1 (1 i 2dP£§)
10 dxp 5 dxp 10 dxp 5 dzp

1LdPY" | 1dPY | 1 4P <1 dPIF 1dP7C>

1 dP5F 1 dP5C> 1 < 1 dP’F 1 dP7C>
2 2 T3

i
i

1
2

1cu 1CS 1CS

10 dxp 10 dzxp 10 dxp 10 dzp 8 drp
1 (;dazF Ll (1 inl, 10E)
10 dxr 2 drp 10 dzFr 8 dxp
1 dPEg | 3dP{ 1 dPE | 1dPY
(10 dep 8 dap ) (10 dep 2 drp )

1LdPY 1 ( LdPL 1dP7C> 1 dPE 1 dPIF

i icu icu 2~ ics

(A-7)

(A-8)

Fewer charm hadrons are produced by coalescence from the five-quark configura-

tion of the proton since it has no valence strange quark. In the |uudce) configura-

tion, there are four final-state hadrons with a valence ¢ quark (2A}, X1+ (uuc) and

J/v) and also four final-state hadrons with a valence ¢ quark (230, D~ and J/v).

The |uudcéqq) configurations allow coalescence production of eight possible final-state

hadrons with a valence ¢ and five possible final-state hadrons with a valence €. When

qq = ud, the possible hadrons produced by coalescence are: 3A}, 35+, D% and J/v

with a valence ¢ and D, 3D and J /1 with a valence €. The dd configuration allows

coalescence production of the following hadrons with a valence ¢ quark, 4A}, 30,

Y+, D and J/4, and, with a valence ¢, 2D, 9D and J/1. The ss configuration

yields 251, 2% 2AF, ¥+ Df and J/v while the final-state valence ¢ quarks hadrons

are 2D, D', D, and J/1. Then:

dPp-
diL'F

_ 1(1 dP3¥ 1dPiiC> (1 dPIF 1dP7C>

1cu 1cu
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(1 dPl§ ZdPiZS’> L1 (1 APy 1dRZ§> (A-9)
10 dzp 5 dxp 10 dzp 5 dxp
dPpr _ 1dP¥  1dPE 1 (; arzt 1dPizgf> LaPE
drp 10 dzp 10 dzp 10 dzp 8 dxp 10 dzrp
dPy+ 1 dP¥ 14dP3°¢ 1 dPF  34dPI¢
drp (10 dor 2 dxp>+ (10 dor 8 dasp>

(1 dPi§ ldPiZdC> L1 (1 AP 1dP£§> (A1)

10 dzp 2 dxp 10 dzp 4 dxp

dPyy _ 1dPY 1dPE 1(;@@5 1dPizg> LAPE
drp 10 dxp 10 drp 10 dxp 8 dxp 10 drp
o LR VAR LI (LI LI (g
drp 10 dxr 10 drp 10 dzr 2 10 dxg 5 drp
Py LR LARE LA L (LI L)
drp 10 dxp 10 drp 10 dzp 2 10 dxp 8 dxp
dPy _ LARF AR 1 dPE 1 (1 AP 1dzaz§) -
drp 10 dxr 10 drp 10 dzr 2 10 dxp 8 dxp
dPr _ 1R 1P 1 aPd 1 (1 argr 1dazgf) o
drp 10 dzp ' 10 dop | 10 dzp @ 2 \10 dzp @ 4 dzp |

Charm and anticharm hadron production is more symmetric from the 7~ because
the projectile contains a valence antiquark of its own. In the minimal [@dce) config-
uration, there are two possible final-state hadrons with a valence ¢ quark (D° and
J/1) and also two possible final-state hadrons with a valence ¢ quark (D~ and J/%).
The |udceqq) configurations allow coalescence production of four possible final-state
hadrons with a valence ¢ and likewise four possible final-state hadrons with a valence
¢. When ¢g = uu, the possible hadrons produced by coalescence are: A}, 2D° and
J/v with a valence ¢ and D™, D’ T, " and J/y with a valence . The dd configu-
ration allows coalescence production of the following hadrons with a valence ¢ quark,

Y0 D° Dt and J/4, and, with a valence ¢, D™, D, K: and J/1. The s35 configura-

tion yields 2%, D, D° and J/v with a valence ¢ while the possible final-state valence
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¢ quarks hadrons are D™, D_,

dPp-
dz F

dPD+
dIF
dPA+

C

dzp

dPso
dzp
dPp-
drp
dPps+
drp
dPx=o

Z' and J/¢. In this case:

1 (1dP¥ 14PN 1 (1dPSE  1dPL
§<E dop 2 dxF>+§<1o dep 4 dxF>
(1 dRi§+}dHi§>+ (1 Qi 1de3§>

10 dzp 2 dxp 10 dxp 4 dxp
LR LA (LA 10 | Lt
10 dxr 10 dxp 10 dxg 4 dxg 10 drp
1 dPc” 1dPgy | 1dPT\ | 1dPeg | 1dPY
10 dxp (10 drp 4 drp ) 10 dxp 10 drp
1dpP"  1dPET 1 (1dP3  1dPgY | 1dPY
10 drp 10 dxp 2 (E dxp 4 drp ) 10 dzp
AP PR aRE 1 (1 dRE 1P
10 dxp 10 dxp 10 drp 5 (10 drp 4 drp >
LdR"  1dBy  1dBy 1 (1dRy  1dBS
10 drp 10 drp 10 dzrp 5 (10 dzrp 4 dzrp )
LdR"  1dBy  1dBy 1 (1dPy  1dBS
10 dxp 10 dxp 10 drp 5 (10 drp 4 drp >
1dP"  1dPyy  1dPgf  1dBY
10 dzp | 10 dzp = 10 dzp | 10 dzp

~—~

A-17)
(A-18)
(A-19)
(A-20)
(A-21)
(A-22)
(A-23)

(A-24)
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